logo

Programarea ponderată a locurilor de muncă | Setul 2 (folosind LIS)

Având în vedere N locuri de muncă în care fiecare loc de muncă este reprezentat prin următoarele trei elemente ale acestuia.
1. Ora de începere 
2. Finish Time 
3. Profit sau valoare asociată
Găsiți subsetul de profit maxim de locuri de muncă astfel încât să nu se suprapună două locuri de muncă din subset.

Exemple:  



    Input:       
Number of Jobs n = 4
Job Details {Start Time Finish Time Profit}
Job 1: {1 2 50}
Job 2: {3 5 20}
Job 3: {6 19 100}
Job 4: {2 100 200}

Output:
Job 1: {1 2 50}
Job 4: {2 100 200}

Explanation: We can get the maximum profit by
scheduling jobs 1 and 4 and maximum profit is 250.

În anterior post pe care am discutat despre problema de programare ponderată a locurilor de muncă. Am discutat despre o soluție DP în care practic includem sau excludem jobul curent. În această postare este discutată o altă soluție DP interesantă unde tipărim și Joburile. Această problemă este o variație a standardului Subsecvența cu cea mai lungă creștere (LIS) problemă. Avem nevoie de o mică schimbare în soluția de programare dinamică a problemei LIS.

Mai întâi trebuie să sortăm joburile în funcție de ora de începere. Fie job[0..n-1] să fie șirul de joburi după sortare. Definim vectorul L astfel încât L[i] este el însuși un vector care stochează Programarea ponderată a jobului a jobului[0..i] care se termină cu job[i]. Prin urmare, pentru un indice i L[i] poate fi scris recursiv ca - 

L[0] = {job[0]}  
L[i] = {MaxSum(L[j])} + job[i] where j < i and job[j].finish <= job[i].start
= job[i] if there is no such j


De exemplu, luați în considerare perechile {3 10 20} {1 2 50} {6 19 100} {2 100 200}



After sorting we get   
{1 2 50} {2 100 200} {3 10 20} {6 19 100}

Therefore
L[0]: {1 2 50}
L[1]: {1 2 50} {2 100 200}
L[2]: {1 2 50} {3 10 20}
L[3]: {1 2 50} {6 19 100}

Alegem vectorul cu cel mai mare profit. În acest caz L[1].

Mai jos este implementarea ideii de mai sus - 

C++
// C++ program for weighted job scheduling using LIS #include    #include  #include    using namespace std; // A job has start time finish time and profit. struct Job {  int start finish profit; }; // Utility function to calculate sum of all vector // elements int findSum(vector<Job> arr) {  int sum = 0;  for (int i = 0; i < arr.size(); i++)  sum += arr[i].profit;  return sum; } // comparator function for sort function int compare(Job x Job y) {  return x.start < y.start; } // The main function that finds the maximum possible // profit from given array of jobs void findMaxProfit(vector<Job> &arr) {  // Sort arr[] by start time.  sort(arr.begin() arr.end() compare);  // L[i] stores Weighted Job Scheduling of  // job[0..i] that ends with job[i]  vector<vector<Job>> L(arr.size());  // L[0] is equal to arr[0]  L[0].push_back(arr[0]);  // start from index 1  for (int i = 1; i < arr.size(); i++)  {  // for every j less than i  for (int j = 0; j < i; j++)  {  // L[i] = {MaxSum(L[j])} + arr[i] where j < i  // and arr[j].finish <= arr[i].start  if ((arr[j].finish <= arr[i].start) &&  (findSum(L[j]) > findSum(L[i])))  L[i] = L[j];  }  L[i].push_back(arr[i]);  }  vector<Job> maxChain;  // find one with max profit  for (int i = 0; i < L.size(); i++)  if (findSum(L[i]) > findSum(maxChain))  maxChain = L[i];  for (int i = 0; i < maxChain.size(); i++)  cout << '(' << maxChain[i].start << ' ' <<  maxChain[i].finish << ' '  << maxChain[i].profit << ') '; } // Driver Function int main() {  Job a[] = { {3 10 20} {1 2 50} {6 19 100}  {2 100 200} };  int n = sizeof(a) / sizeof(a[0]);  vector<Job> arr(a a + n);  findMaxProfit(arr);  return 0; } 
Java
// Java program for weighted job  // scheduling using LIS import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; class Graph{ // A job has start time finish time // and profit. static class Job {  int start finish profit;  public Job(int start int finish   int profit)  {  this.start = start;  this.finish = finish;  this.profit = profit;  } }; // Utility function to calculate sum of all // ArrayList elements static int findSum(ArrayList<Job> arr)  {  int sum = 0;    for(int i = 0; i < arr.size(); i++)  sum += arr.get(i).profit;    return sum; } // The main function that finds the maximum // possible profit from given array of jobs static void findMaxProfit(ArrayList<Job> arr) {    // Sort arr[] by start time.  Collections.sort(arr new Comparator<Job>()   {  @Override  public int compare(Job x Job y)   {  return x.start - y.start;  }  });    // sort(arr.begin() arr.end() compare);  // L[i] stores Weighted Job Scheduling of  // job[0..i] that ends with job[i]  ArrayList<ArrayList<Job>> L = new ArrayList<>();  for(int i = 0; i < arr.size(); i++)  {  L.add(new ArrayList<>());  }  // L[0] is equal to arr[0]  L.get(0).add(arr.get(0));  // Start from index 1  for(int i = 1; i < arr.size(); i++)   {    // For every j less than i  for(int j = 0; j < i; j++)  {    // L[i] = {MaxSum(L[j])} + arr[i] where j < i  // and arr[j].finish <= arr[i].start  if ((arr.get(j).finish <= arr.get(i).start) &&  (findSum(L.get(j)) > findSum(L.get(i))))  {  ArrayList<Job> copied = new ArrayList<>(  L.get(j));  L.set(i copied);  }  }  L.get(i).add(arr.get(i));  }  ArrayList<Job> maxChain = new ArrayList<>();  // Find one with max profit  for(int i = 0; i < L.size(); i++)  if (findSum(L.get(i)) > findSum(maxChain))  maxChain = L.get(i);  for(int i = 0; i < maxChain.size(); i++)   {  System.out.printf('(%d %d %d)n'   maxChain.get(i).start   maxChain.get(i).finish  maxChain.get(i).profit);  } } // Driver code public static void main(String[] args) {  Job[] a = { new Job(3 10 20)   new Job(1 2 50)  new Job(6 19 100)  new Job(2 100 200) };  ArrayList<Job> arr = new ArrayList<>(  Arrays.asList(a));  findMaxProfit(arr); } } // This code is contributed by sanjeev2552 
Python
# Python program for weighted job scheduling using LIS import sys # A job has start time finish time and profit. class Job: def __init__(self start finish profit): self.start = start self.finish = finish self.profit = profit # Utility function to calculate sum of all vector elements def findSum(arr): sum = 0 for i in range(len(arr)): sum += arr[i].profit return sum # comparator function for sort function def compare(x y): if x.start < y.start: return -1 elif x.start == y.start: return 0 else: return 1 # The main function that finds the maximum possible profit from given array of jobs def findMaxProfit(arr): # Sort arr[] by start time. arr.sort(key=lambda x: x.start) # L[i] stores Weighted Job Scheduling of job[0..i] that ends with job[i] L = [[] for _ in range(len(arr))] # L[0] is equal to arr[0] L[0].append(arr[0]) # start from index 1 for i in range(1 len(arr)): # for every j less than i for j in range(i): # L[i] = {MaxSum(L[j])} + arr[i] where j < i # and arr[j].finish <= arr[i].start if arr[j].finish <= arr[i].start and findSum(L[j]) > findSum(L[i]): L[i] = L[j][:] L[i].append(arr[i]) maxChain = [] # find one with max profit for i in range(len(L)): if findSum(L[i]) > findSum(maxChain): maxChain = L[i] for i in range(len(maxChain)): print('({} {} {})'.format( maxChain[i].start maxChain[i].finish maxChain[i].profit) end=' ') # Driver Function if __name__ == '__main__': a = [Job(3 10 20) Job(1 2 50) Job(6 19 100) Job(2 100 200)] findMaxProfit(a) 
C#
using System; using System.Collections.Generic; using System.Linq; public class Graph {  // A job has start time finish time  // and profit.  public class Job  {  public int start finish profit;  public Job(int start int finish   int profit)  {  this.start = start;  this.finish = finish;  this.profit = profit;  }  };  // Utility function to calculate sum of all  // ArrayList elements  public static int FindSum(List<Job> arr)   {  int sum = 0;    for(int i = 0; i < arr.Count; i++)  sum += arr.ElementAt(i).profit;    return sum;  }  // The main function that finds the maximum  // possible profit from given array of jobs  public static void FindMaxProfit(List<Job> arr)  {    // Sort arr[] by start time.  arr.Sort((x y) => x.start.CompareTo(y.start));  // L[i] stores Weighted Job Scheduling of  // job[0..i] that ends with job[i]  List<List<Job>> L = new List<List<Job>>();  for(int i = 0; i < arr.Count; i++)  {  L.Add(new List<Job>());  }  // L[0] is equal to arr[0]  L[0].Add(arr[0]);  // Start from index 1  for(int i = 1; i < arr.Count; i++)   {    // For every j less than i  for(int j = 0; j < i; j++)  {    // L[i] = {MaxSum(L[j])} + arr[i] where j < i  // and arr[j].finish <= arr[i].start  if ((arr[j].finish <= arr[i].start) &&  (FindSum(L[j]) > FindSum(L[i])))  {  List<Job> copied = new List<Job>(  L[j]);  L[i] = copied;  }  }  L[i].Add(arr[i]);  }  List<Job> maxChain = new List<Job>();  // Find one with max profit  for(int i = 0; i < L.Count; i++)  if (FindSum(L[i]) > FindSum(maxChain))  maxChain = L[i];  for(int i = 0; i < maxChain.Count; i++)   {  Console.WriteLine('({0} {1} {2})'   maxChain[i].start   maxChain[i].finish  maxChain[i].profit);  }  }  // Driver code  public static void Main(String[] args)  {  Job[] a = { new Job(3 10 20)   new Job(1 2 50)  new Job(6 19 100)  new Job(2 100 200) };  List<Job> arr = new List<Job>(a);  FindMaxProfit(arr);  } } 
JavaScript
// JavaScript program for weighted job scheduling using LIS // A job has start time finish time and profit. function Job(start finish profit) {  this.start = start;  this.finish = finish;  this.profit = profit; } // Utility function to calculate sum of all vector // elements function findSum(arr) {  let sum = 0;  for (let i = 0; i < arr.length; i++) {  sum += arr[i].profit;  }  return sum; } // comparator function for sort function function compare(x y) {  return x.start < y.start; } // The main function that finds the maximum possible // profit from given array of jobs function findMaxProfit(arr) {  // Sort arr[] by start time.  arr.sort(compare);  // L[i] stores Weighted Job Scheduling of  // job[0..i] that ends with job[i]  let L = new Array(arr.length).fill([]);  // L[0] is equal to arr[0]  L[0] = [arr[0]];  // start from index 1  for (let i = 1; i < arr.length; i++) {  // for every j less than i  for (let j = 0; j < i; j++) {  // L[i] = {MaxSum(L[j])} + arr[i] where j < i  // and arr[j].finish <= arr[i].start  if (arr[j].finish <= arr[i].start && findSum(L[j]) > findSum(L[i])) {  L[i] = L[j];  }  }  L[i].push(arr[i]);  }  let maxChain = [];  // find one with max profit  for (let i = 0; i < L.length; i++) {  if (findSum(L[i]) > findSum(maxChain)) {  maxChain = L[i];  }  }  for (let i = 0; i < maxChain.length; i++) {  console.log(  '(' +  maxChain[i].start +  ' ' +  maxChain[i].finish +  ' ' +  maxChain[i].profit +  ') '  );  } } // Driver Function let a = [  new Job(3 10 20)  new Job(1 2 50)  new Job(2 100 200) ]; findMaxProfit(a); 

Ieșire
(1 2 50) (2 100 200) 


Putem optimiza în continuare soluția DP de mai sus eliminând funcția findSum(). În schimb, putem menține un alt vector/matrice pentru a stoca suma profitului maxim posibil până la job i.



Complexitatea timpului soluția de programare dinamică de mai sus este O(n2) unde n este numărul de locuri de muncă. 
Spațiu auxiliar folosit de program este O(n2).