logo

Energia inițială minimă necesară pentru a traversa strada

Încercați-l pe GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Dată o matrice care conține numere pozitive și negative. Matricea reprezintă puncte de control de la un capăt la celălalt capăt al străzii. Valorile pozitive și negative reprezintă cantitatea de energie la acel punct de control. Numerele pozitive cresc energia, iar numerele negative scad. Găsiți energia inițială minimă necesară pentru a traversa strada, astfel încât nivelul de energie să nu devină niciodată 0 sau mai mic de 0.

Notă: Valoarea energiei minime inițiale necesare va fi 1 chiar dacă traversăm strada cu succes fără a pierde energie la mai puțin și egală cu 0 la orice punct de control. 1 este necesar pentru punctul de control inițial.



Exemple:  

Input : arr[] = {4 -10 4 4 4}  
Output: 7
Suppose initially we have energy = 0 now at 1st
checkpoint we get 4. At 2nd checkpoint energy gets
reduced by -10 so we have 4 + (-10) = -6 but at any
checkpoint value of energy can not less than equals
to 0. So initial energy must be at least 7 because
having 7 as initial energy value at 1st checkpoint
our energy will be = 7+4 = 11 and then we can cross
2nd checkpoint successfully. Now after 2nd checkpoint
all checkpoint have positive value so we can cross
street successfully with 7 initial energy.
Input : arr[] = {3 5 2 6 1}
Output: 1
We need at least 1 initial energy to reach first
checkpoint
Input : arr[] = {-1 -5 -9}
Output: 16
Recommended Practice Energie minima Încearcă!

Abordarea cu forța brută:

  • Pentru fiecare nivel de energie inițial posibil (începând de la 1) simulați traversarea străzii folosind acel nivel de energie și verificați dacă nivelul de energie rămâne pozitiv în orice moment.
  • Reveniți nivelul minim de energie inițial care asigură că nivelul de energie nu devine niciodată zero sau negativ.

Mai jos este codul pentru abordarea de mai sus:



C++
#include   using namespace std; // Function to check if energy level never becomes negative or zero bool check(int arr[] int n int initEnergy) {  int energy = initEnergy;  for (int i = 0; i < n; i++) {  energy += arr[i];  if (energy <= 0) {  return false;  }  }  return true; } // Function to calculate minimum initial energy // arr[] stores energy at each checkpoints on street int minInitialEnergy(int arr[] int n) {  int minEnergy = 1;  while (!check(arr n minEnergy)) {  minEnergy++;  }  return minEnergy; } // Driver code int main() {  int arr[] = {4 -10 4 4 4};  int n = sizeof(arr)/sizeof(arr[0]);  cout << minInitialEnergy(arr n);  return 0; } 
Java
import java.util.*; public class GFG {  // Function to check if energy level never becomes  // negative or zero  static boolean check(int[] arr int n int initEnergy)  {  int energy = initEnergy;  for (int i = 0; i < n; i++) {  energy += arr[i];  if (energy <= 0) {  return false;  }  }  return true;  }  // Function to calculate minimum initial energy  // arr[] stores energy at each checkpoints on the street  static int minInitialEnergy(int[] arr int n)  {  int minEnergy = 1;  while (!check(arr n minEnergy)) {  minEnergy++;  }  return minEnergy;  }  // Driver code  public static void main(String[] args)  {  int[] arr = { 4 -10 4 4 4 };  int n = arr.length;  System.out.println(minInitialEnergy(arr n));  } } // This code is contributed by akshitaguprzj3 
Python3
# Function to check if energy level never becomes negative or zero def check(arr n initEnergy): energy = initEnergy for i in range(n): energy += arr[i] if energy <= 0: return False return True # Function to calculate minimum initial energy # arr stores energy at each checkpoints on street def minInitialEnergy(arr n): minEnergy = 1 while not check(arr n minEnergy): minEnergy += 1 return minEnergy # Driver code arr = [4 -10 4 4 4] n = len(arr) print(minInitialEnergy(arr n)) # THIS CODE IS CONTRIBUTED BY CHANDAN AGARWAL 
C#
using System; namespace EnergyCheck {  class GFG  {  // Function to check if energy level never becomes negative or zero  static bool Check(int[] arr int n int initEnergy)  {  int energy = initEnergy;  for (int i = 0; i < n; i++)  {  energy += arr[i];  if (energy <= 0)  {  return false;  }  }  return true;  }  // Function to calculate minimum initial energy  // arr[] stores energy at each checkpoints on street  static int MinInitialEnergy(int[] arr int n)  {  int minEnergy = 1;  while (!Check(arr n minEnergy))  {  minEnergy++;  }  return minEnergy;  }  // Driver code  static void Main(string[] args)  {  int[] arr = { 4 -10 4 4 4 };  int n = arr.Length;  Console.WriteLine(MinInitialEnergy(arr n));  }  } } 
JavaScript
// Function to check if energy level never becomes negative or zero function check(arr n initEnergy) {  let energy = initEnergy;  for (let i = 0; i < n; i++) {  energy += arr[i];  if (energy <= 0) {  return false;  }  }  return true; } // Function to calculate minimum initial energy // arr[] stores energy at each checkpoints on street function minInitialEnergy(arr n) {  let minEnergy = 1;  while (!check(arr n minEnergy)) {  minEnergy++;  }  return minEnergy; } // Driver code let arr = [4 -10 4 4 4]; let n = arr.length; console.log(minInitialEnergy(arr n)); 

Ieșire:

7  

Complexitatea timpului: O(2^n)

Spatiu auxiliar: Pe)



Luăm energia minimă inițială 0 i.e; initMinEnergy = 0 și energie la orice punct de control ca currEnergy = 0. Acum traversați fiecare punct de control liniar și adăugați nivelul de energie la fiecare al al-lea punct de control, adică; currEnergy = currEnergy + arr[i]. Dacă currEnergy devine nepozitiv, atunci avem nevoie de cel puțin „abs(currEnergy) + 1” energie inițială suplimentară pentru a trece de acest punct. Prin urmare, actualizăm initMinEnergy = (initMinEnergy + abs(currEnergy) + 1). De asemenea, actualizăm currEnergy = 1, deoarece acum avem energia inițială minimă suplimentară necesară pentru următorul punct.

Mai jos este implementarea ideii de mai sus. 

C++
// C++ program to find minimum initial energy to  // reach end  #include    using namespace std;  // Function to calculate minimum initial energy  // arr[] stores energy at each checkpoints on street  int minInitialEnergy(int arr[] int n)  {   // initMinEnergy is variable to store minimum initial   // energy required.   int initMinEnergy = 0;   // currEnergy is variable to store current value of   // energy at i'th checkpoint on street   int currEnergy = 0;   // flag to check if we have successfully crossed the   // street without any energy loss <= o at any checkpoint   bool flag = 0;   // Traverse each check point linearly   for (int i=0; i<n; i++)   {   currEnergy += arr[i];   // If current energy becomes negative or 0 increment   // initial minimum energy by the negative value plus 1.   // to keep current energy positive (at least 1). Also   // update current energy and flag.   if (currEnergy <= 0)   {   initMinEnergy += abs(currEnergy) +1;   currEnergy = 1;   flag = 1;   }   }   // If energy never became negative or 0 then   // return 1. Else return computed initMinEnergy   return (flag == 0)? 1 : initMinEnergy;  }  // Driver Program to test the case  int main()  {   int arr[] = {4 -10 4 4 4};   int n = sizeof(arr)/sizeof(arr[0]);   cout << minInitialEnergy(arr n);   return 0;  }  
Java
// Java program to find minimum  // initial energy to reach end class GFG {   // Function to calculate minimum  // initial energy arr[] stores energy // at each checkpoints on street static int minInitialEnergy(int arr[] int n)  {  // initMinEnergy is variable to store   // minimum initial energy required.  int initMinEnergy = 0;  // currEnergy is variable to store   // current value of energy at  // i'th checkpoint on street  int currEnergy = 0;  // flag to check if we have successfully   // crossed the street without any energy   // loss <= o at any checkpoint  boolean flag = false;  // Traverse each check point linearly  for (int i = 0; i < n; i++) {  currEnergy += arr[i];  // If current energy becomes negative or 0   // increment initial minimum energy by the negative  // value plus 1. to keep current energy  // positive (at least 1). Also  // update current energy and flag.  if (currEnergy <= 0) {  initMinEnergy += Math.abs(currEnergy) + 1;  currEnergy = 1;  flag = true;  }  }  // If energy never became negative or 0 then  // return 1. Else return computed initMinEnergy  return (flag == false) ? 1 : initMinEnergy; } // Driver code public static void main(String[] args) {  int arr[] = {4 -10 4 4 4};  int n = arr.length;  System.out.print(minInitialEnergy(arr n)); } } // This code is contributed by Anant Agarwal. 
Python3
# Python program to find minimum initial energy to # reach end # Function to calculate minimum initial energy # arr[] stores energy at each checkpoints on street def minInitialEnergy(arr): n = len(arr) # initMinEnergy is variable to store minimum initial # energy required initMinEnergy = 0; # currEnergy is variable to store current value of # energy at i'th checkpoint on street currEnergy = 0 # flag to check if we have successfully crossed the # street without any energy loss <= 0 at any checkpoint  flag = 0 # Traverse each check point linearly for i in range(n): currEnergy += arr[i] # If current energy becomes negative or 0 increment # initial minimum energy by the negative value plus 1. # to keep current energy positive (at least 1). Also # update current energy and flag. if currEnergy <= 0 : initMinEnergy += (abs(currEnergy) +1) currEnergy = 1 flag = 1 # If energy never became negative or 0 then  # return 1. Else return computed initMinEnergy return 1 if flag == 0 else initMinEnergy # Driver program to test above function arr = [4 -10  4 4 4] print (minInitialEnergy(arr)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007) 
C#
// C# program to find minimum  // C# program to find minimum  // initial energy to reach end using System; class GFG {   // Function to calculate minimum  // initial energy arr[] stores energy // at each checkpoints on street static int minInitialEnergy(int []arr int n)  {    // initMinEnergy is variable to store   // minimum initial energy required.  int initMinEnergy = 0;  // currEnergy is variable to store   // current value of energy at  // i'th checkpoint on street  int currEnergy = 0;  // flag to check if we have successfully   // crossed the street without any energy   // loss <= o at any checkpoint  bool flag = false;  // Traverse each check point linearly  for (int i = 0; i < n; i++) {  currEnergy += arr[i];  // If current energy becomes negative or 0   // negativeincrement initial minimum energy   // by the value plus 1. to keep current   // energy positive (at least 1). Also  // update current energy and flag.  if (currEnergy <= 0)  {  initMinEnergy += Math.Abs(currEnergy) + 1;  currEnergy = 1;  flag = true;  }  }  // If energy never became negative  // or 0 then return 1. Else return  // computed initMinEnergy  return (flag == false) ? 1 : initMinEnergy; } // Driver code public static void Main() {  int []arr = {4 -10 4 4 4};  int n = arr.Length;  Console.Write(minInitialEnergy(arr n)); } } // This code is contributed by Nitin Mittal. 
JavaScript
<script> // Javascript program to find minimum // initial energy to reach end // Function to calculate minimum // initial energy arr[] stores // energy at each checkpoints on street function minInitialEnergy(arr n) {  // initMinEnergy is variable  // to store minimum initial  // energy required.  let initMinEnergy = 0;  // currEnergy is variable to  // store current value of energy  // at i'th checkpoint on street  let currEnergy = 0;  // flag to check if we have  // successfully crossed the  // street without any energy  // loss <= o at any checkpoint  let flag = 0;  // Traverse each check  // point linearly  for (let i = 0; i < n; i++) {  currEnergy += arr[i];  // If current energy becomes  // negative or 0 increment  // initial minimum energy by  // the negative value plus 1.  // to keep current energy  // positive (at least 1). Also  // update current energy and flag.  if (currEnergy <= 0) {  initMinEnergy += Math.abs(currEnergy) + 1;  currEnergy = 1;  flag = 1;  }  }  // If energy never became  // negative or 0 then  // return 1. Else return  // computed initMinEnergy  return (flag == 0) ? 1 : initMinEnergy; } // Driver Code let arr = new Array(4 -10 4 4 4); let n = arr.length; document.write(minInitialEnergy(arr n)); // This code is contributed // by Saurabh Jaiswal </script> 
PHP
 // PHP program to find minimum  // initial energy to reach end // Function to calculate minimum  // initial energy arr[] stores  // energy at each checkpoints on street function minInitialEnergy($arr $n) { // initMinEnergy is variable // to store minimum initial // energy required. $initMinEnergy = 0; // currEnergy is variable to // store current value of energy // at i'th checkpoint on street $currEnergy = 0; // flag to check if we have  // successfully crossed the  // street without any energy // loss <= o at any checkpoint $flag = 0; // Traverse each check // point linearly for ($i = 0; $i < $n; $i++) { $currEnergy += $arr[$i]; // If current energy becomes // negative or 0 increment // initial minimum energy by  // the negative value plus 1. // to keep current energy  // positive (at least 1). Also  // update current energy and flag. if ($currEnergy <= 0) { $initMinEnergy += abs($currEnergy) + 1; $currEnergy = 1; $flag = 1; } } // If energy never became  // negative or 0 then // return 1. Else return  // computed initMinEnergy return ($flag == 0) ? 1 : $initMinEnergy; } // Driver Code $arr = array(4 -10 4 4 4); $n = sizeof($arr); echo minInitialEnergy($arr $n); // This code is contributed  // by nitin mittal.  ?> 

Ieșire
7

Complexitatea timpului: O(n) 
Spațiu auxiliar: O(1)