logo

Cel mai mare Plus sau „+” format din toate cele dintr-o matrice pătrată binară

Având în vedere o n × n matrice binară împreună cu constând din 0s şi 1s . Sarcina ta este să găsești dimensiunea celui mai mare '+' formă care poate fi formată numai folosind 1s .

semnul plus' title=

O '+' forma constă dintr-o celulă centrală cu patru brațe care se extind în toate cele patru direcții ( sus în jos stânga și dreapta ) rămânând în același timp în limitele matricei. Dimensiunea a '+' este definit ca fiind numărul total de celule formând-o inclusiv centrul și toate brațele.



Sarcina este de a returna dimensiune maximă de orice valabil '+' în împreună cu . Daca nu '+' poate fi format retur .

Exemple:

java pgm

Intrare: cu = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]
Ieșire: 9
Explicaţie: Un „+” cu o lungime a brațului de 2 (2 celule în fiecare direcție + 1 centru) poate fi format în centrul covorașului.
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1
1 1 1 0 1
0 1 1 1 0
Dimensiunea totală = (2 × 4) + 1 = 9



Intrare: cu = [ [0 1 1] [0 0 1] [1 1 1] ]
Ieșire: 1
Explicaţie: Un „+” cu o lungime a brațului de 0 (0 celule în fiecare direcție + 1 centru) poate fi format cu oricare dintre 1.

Intrare: cu = [ [0] ]
Ieșire:
Explicaţie: Nu Se poate forma semnul „+”.

[Abordare naivă] - Considerați fiecare punct ca centru - O(n^4) Timpul și O(n^4) Spațiul

Traversați celulele matricei unul câte unul. Considerați fiecare punct traversat ca centru al unui plus și găsiți dimensiunea lui +. Pentru fiecare element parcurgem stânga dreapta jos și sus. Cel mai rău caz în această soluție se întâmplă atunci când avem toate cele 1.



seleniu

[Abordare așteptată] - Precalculați 4 tablouri - O(n^2) Timp și O(n^2) Spațiu

The idee este de a menține patru matrici auxiliare stânga[][] dreapta[][] sus[][] jos[][] pentru a stoca 1 consecutive în toate direcțiile. Pentru fiecare celulă (i j) în matricea de intrare stocăm mai jos informații în acestea patru matrice -

  • stânga (i j) stochează numărul maxim de 1 consecutivi la stânga a celulei (i j) inclusiv celula (i j).
  • dreapta (i j) stochează numărul maxim de 1 consecutivi la corect a celulei (i j) inclusiv celula (i j).
  • sus(i j) stochează numărul maxim de 1 consecutiv la top a celulei (i j) inclusiv celula (i j).
  • jos (i j) stochează numărul maxim de 1 consecutiv la fund a celulei (i j) inclusiv celula (i j).

După calcularea valorii pentru fiecare celulă din matricele de mai sus cel mai mare'+' ar fi format dintr-o celulă a matricei de intrare care are valoare maximă luând în considerare minim de ( stânga(i j) dreapta(i j) sus(i j) jos(i ​​j) )

Putem folosi Programare dinamică pentru a calcula suma totală de 1 consecutivi în fiecare direcție:

dacă mat(i j) == 1
stânga(i j) = stânga(i j - 1) + 1

else left(i j) = 0


dacă mat(i j) == 1
top(i j) = top(i - 1 j) + 1;

șir int

else top(i j) = 0;


dacă mat(i j) == 1
jos(i ​​j) = jos(i ​​+ 1 j) + 1;

else bottom(i j) = 0;


dacă mat(i j) == 1
dreapta(i j) = dreapta(i j + 1) + 1;

else right(i j) = 0;

Mai jos este implementarea abordării de mai sus:

arbore binar în parcurgere în ordine
C++
// C++ program to find the largest '+' in a binary matrix // using Dynamic Programming #include    using namespace std; int findLargestPlus(vector<vector<int>> &mat) {    int n = mat.size();    vector<vector<int>> left(n vector<int>(n 0));  vector<vector<int>> right(n vector<int>(n 0));  vector<vector<int>> top(n vector<int>(n 0));  vector<vector<int>> bottom(n vector<int>(n 0));    // Fill left and top matrices  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  if (mat[i][j] == 1) {  left[i][j] = (j == 0) ? 1 : left[i][j - 1] + 1;  top[i][j] = (i == 0) ? 1 : top[i - 1][j] + 1;  }  }  }    // Fill right and bottom matrices  for (int i = n - 1; i >= 0; i--) {  for (int j = n - 1; j >= 0; j--) {  if (mat[i][j] == 1) {  right[i][j] = (j == n - 1) ? 1 : right[i][j + 1] + 1;  bottom[i][j] = (i == n - 1) ? 1 : bottom[i + 1][j] + 1;  }  }  }    int maxPlusSize = 0;    // Compute the maximum '+' size  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  if (mat[i][j] == 1) {  int armLength = min({left[i][j] right[i][j]  top[i][j] bottom[i][j]});    maxPlusSize = max(maxPlusSize  (4 * (armLength - 1)) + 1);  }  }  }    return maxPlusSize; } int main() {    // Hardcoded input matrix  vector<vector<int>> mat = {  {0 1 1 0 1}  {0 0 1 1 1}  {1 1 1 1 1}  {1 1 1 0 1}  {0 1 1 1 0}  };    cout << findLargestPlus(mat) << endl;  return 0; } 
Java
// Java program to find the largest '+' in a binary matrix // using Dynamic Programming class GfG {    static int findLargestPlus(int[][] mat) {    int n = mat.length;    int[][] left = new int[n][n];  int[][] right = new int[n][n];  int[][] top = new int[n][n];  int[][] bottom = new int[n][n];    // Fill left and top matrices  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  if (mat[i][j] == 1) {  left[i][j] = (j == 0) ? 1 : left[i][j - 1] + 1;  top[i][j] = (i == 0) ? 1 : top[i - 1][j] + 1;  }  }  }    // Fill right and bottom matrices  for (int i = n - 1; i >= 0; i--) {  for (int j = n - 1; j >= 0; j--) {  if (mat[i][j] == 1) {  right[i][j] = (j == n - 1) ? 1 : right[i][j + 1] + 1;  bottom[i][j] = (i == n - 1) ? 1 : bottom[i + 1][j] + 1;  }  }  }    int maxPlusSize = 0;    // Compute the maximum '+' size  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  if (mat[i][j] == 1) {  int armLength = Math.min(Math.min(left[i][j] right[i][j])  Math.min(top[i][j] bottom[i][j]));    maxPlusSize = Math.max(maxPlusSize  (4 * (armLength - 1)) + 1);  }  }  }    return maxPlusSize;  }  public static void main(String[] args) {    // Hardcoded input matrix  int[][] mat = {  {0 1 1 0 1}  {0 0 1 1 1}  {1 1 1 1 1}  {1 1 1 0 1}  {0 1 1 1 0}  };    System.out.println(findLargestPlus(mat));  } } 
Python
# Python program to find the largest '+' in a binary matrix # using Dynamic Programming def findLargestPlus(mat): n = len(mat) left = [[0] * n for i in range(n)] right = [[0] * n for i in range(n)] top = [[0] * n for i in range(n)] bottom = [[0] * n for i in range(n)] # Fill left and top matrices for i in range(n): for j in range(n): if mat[i][j] == 1: left[i][j] = 1 if j == 0 else left[i][j - 1] + 1 top[i][j] = 1 if i == 0 else top[i - 1][j] + 1 # Fill right and bottom matrices for i in range(n - 1 -1 -1): for j in range(n - 1 -1 -1): if mat[i][j] == 1: right[i][j] = 1 if j == n - 1 else right[i][j + 1] + 1 bottom[i][j] = 1 if i == n - 1 else bottom[i + 1][j] + 1 maxPlusSize = 0 # Compute the maximum '+' size for i in range(n): for j in range(n): if mat[i][j] == 1: armLength = min(left[i][j] right[i][j] top[i][j] bottom[i][j]) maxPlusSize = max(maxPlusSize (4 * (armLength - 1)) + 1) return maxPlusSize if __name__ == '__main__': # Hardcoded input matrix mat = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ] print(findLargestPlus(mat)) 
C#
// C# program to find the largest '+' in a binary matrix // using Dynamic Programming using System; class GfG {    static int FindLargestPlus(int[] mat) {    int n = mat.GetLength(0);    int[] left = new int[n n];  int[] right = new int[n n];  int[] top = new int[n n];  int[] bottom = new int[n n];    // Fill left and top matrices  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  if (mat[i j] == 1) {  left[i j] = (j == 0) ? 1 : left[i j - 1] + 1;  top[i j] = (i == 0) ? 1 : top[i - 1 j] + 1;  }  }  }    // Fill right and bottom matrices  for (int i = n - 1; i >= 0; i--) {  for (int j = n - 1; j >= 0; j--) {  if (mat[i j] == 1) {  right[i j] = (j == n - 1) ? 1 : right[i j + 1] + 1;  bottom[i j] = (i == n - 1) ? 1 : bottom[i + 1 j] + 1;  }  }  }    int maxPlusSize = 0;    // Compute the maximum '+' size  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  if (mat[i j] == 1) {  int armLength = Math.Min(Math.Min(left[i j] right[i j])  Math.Min(top[i j] bottom[i j]));    maxPlusSize = Math.Max(maxPlusSize  (4 * (armLength - 1)) + 1);  }  }  }    return maxPlusSize;  }  public static void Main() {    // Hardcoded input matrix  int[] mat = {  {0 1 1 0 1}  {0 0 1 1 1}  {1 1 1 1 1}  {1 1 1 0 1}  {0 1 1 1 0}  };    Console.WriteLine(FindLargestPlus(mat));  } } 
JavaScript
// JavaScript program to find the largest '+' in a binary matrix // using Dynamic Programming function findLargestPlus(mat) {    let n = mat.length;    let left = Array.from({ length: n } () => Array(n).fill(0));  let right = Array.from({ length: n } () => Array(n).fill(0));  let top = Array.from({ length: n } () => Array(n).fill(0));  let bottom = Array.from({ length: n } () => Array(n).fill(0));    // Fill left and top matrices  for (let i = 0; i < n; i++) {  for (let j = 0; j < n; j++) {  if (mat[i][j] === 1) {  left[i][j] = (j === 0) ? 1 : left[i][j - 1] + 1;  top[i][j] = (i === 0) ? 1 : top[i - 1][j] + 1;  }  }  }    // Fill right and bottom matrices  for (let i = n - 1; i >= 0; i--) {  for (let j = n - 1; j >= 0; j--) {  if (mat[i][j] === 1) {  right[i][j] = (j === n - 1) ? 1 : right[i][j + 1] + 1;  bottom[i][j] = (i === n - 1) ? 1 : bottom[i + 1][j] + 1;  }  }  }    let maxPlusSize = 0;    // Compute the maximum '+' size  for (let i = 0; i < n; i++) {  for (let j = 0; j < n; j++) {  if (mat[i][j] === 1) {  let armLength = Math.min(left[i][j] right[i][j]  top[i][j] bottom[i][j]);    maxPlusSize = Math.max(maxPlusSize  (4 * (armLength - 1)) + 1);  }  }  }    return maxPlusSize; } // Hardcoded input matrix let mat = [  [0 1 1 0 1]  [0 0 1 1 1]  [1 1 1 1 1]  [1 1 1 0 1]  [0 1 1 1 0] ]; console.log(findLargestPlus(mat)); 

Ieșire
9 

Complexitatea timpului: O(n²) datorită a patru treceri pentru a calcula matricele direcționale și o trecere finală pentru a determina cel mai mare „+”. Fiecare trecere durează O(n²) timp conducând la o complexitate generală de O(n²).
Complexitatea spațiului: O(n²) datorită a patru matrice auxiliare (stânga dreapta sus jos) care consumă O(n²) spațiu suplimentar.