Având în vedere un număr „n” și un n numere, sortați numerele folosind Concurente Merge Sort. (Sugestie: Încercați să utilizați apelurile de sistem shmget shmat).
Partea 1: Algoritmul (CUM?)
Faceți recursiv două procese copil, unul pentru jumătatea stângă, unul din jumătatea dreaptă. Dacă numărul de elemente din matrice pentru un proces este mai mic de 5, efectuați a Sortare prin inserare . Părintele celor doi copii îmbină apoi rezultatul și revine înapoi la părinte și așa mai departe. Dar cum o faci simultan?
Partea 2: logica (DE CE?)
Partea importantă a soluției la această problemă nu este algoritmică, ci explicarea conceptelor de sistem de operare și nucleu.
Pentru a realiza sortarea concomitentă avem nevoie de o modalitate de a face două procese să funcționeze pe aceeași matrice în același timp. Pentru a ușura lucrurile, Linux oferă o mulțime de apeluri de sistem prin puncte finale API simple. Două dintre ele sunt shmget() (pentru alocarea memoriei partajate) și shmat() (pentru operațiuni de memorie partajată). Creăm un spațiu de memorie partajat între procesul copil pe care îl bifurcăm. Fiecare segment este împărțit în copil stâng și drept, care este sortat partea interesantă fiind că lucrează concomitent! shmget() solicită nucleului să aloce a pagină partajată pentru ambele procese.
De ce tradiționalul fork() nu funcționează?
Răspunsul constă în ceea ce face de fapt fork(). Din documentație, „fork() creează un nou proces prin duplicarea procesului de apelare”. Procesul copil și procesul părinte rulează în spații de memorie separate. La momentul fork() ambele spații de memorie au același conținut. Memorie scrie fisier-descriptor(fd) modificări etc efectuate de unul dintre procese nu afectează celălalt. Prin urmare, avem nevoie de un segment de memorie partajată.
#include #include #include #include #include #include #include #include void insertionSort(int arr[] int n); void merge(int a[] int l1 int h1 int h2); void mergeSort(int a[] int l int h) { int i len = (h - l + 1); // Using insertion sort for small sized array if (len <= 5) { insertionSort(a + l len); return; } pid_t lpid rpid; lpid = fork(); if (lpid < 0) { // Lchild proc not created perror('Left Child Proc. not createdn'); _exit(-1); } else if (lpid == 0) { mergeSort(a l l + len / 2 - 1); _exit(0); } else { rpid = fork(); if (rpid < 0) { // Rchild proc not created perror('Right Child Proc. not createdn'); _exit(-1); } else if (rpid == 0) { mergeSort(a l + len / 2 h); _exit(0); } } int status; // Wait for child processes to finish waitpid(lpid &status 0); waitpid(rpid &status 0); // Merge the sorted subarrays merge(a l l + len / 2 - 1 h); } /* Function to sort an array using insertion sort*/ void insertionSort(int arr[] int n) { int i key j; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; /* Move elements of arr[0..i-1] that are greater than key to one position ahead of their current position */ while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } // Method to merge sorted subarrays void merge(int a[] int l1 int h1 int h2) { // We can directly copy the sorted elements // in the final array no need for a temporary // sorted array. int count = h2 - l1 + 1; int sorted[count]; int i = l1 k = h1 + 1 m = 0; while (i <= h1 && k <= h2) { if (a[i] < a[k]) sorted[m++] = a[i++]; else if (a[k] < a[i]) sorted[m++] = a[k++]; else if (a[i] == a[k]) { sorted[m++] = a[i++]; sorted[m++] = a[k++]; } } while (i <= h1) sorted[m++] = a[i++]; while (k <= h2) sorted[m++] = a[k++]; int arr_count = l1; for (i = 0; i < count; i++ l1++) a[l1] = sorted[i]; } // To check if array is actually sorted or not void isSorted(int arr[] int len) { if (len == 1) { std::cout << 'Sorting Done Successfully' << std::endl; return; } int i; for (i = 1; i < len; i++) { if (arr[i] < arr[i - 1]) { std::cout << 'Sorting Not Done' << std::endl; return; } } std::cout << 'Sorting Done Successfully' << std::endl; return; } // To fill random values in array for testing // purpose void fillData(int a[] int len) { // Create random arrays int i; for (i = 0; i < len; i++) a[i] = rand(); return; } // Driver code int main() { int shmid; key_t key = IPC_PRIVATE; int *shm_array; int length = 128; // Calculate segment length size_t SHM_SIZE = sizeof(int) * length; // Create the segment. if ((shmid = shmget(key SHM_SIZE IPC_CREAT | 0666)) < 0) { perror('shmget'); _exit(1); } // Now we attach the segment to our data space. if ((shm_array = (int *)shmat(shmid NULL 0)) == (int *)-1) { perror('shmat'); _exit(1); } // Create a random array of given length srand(time(NULL)); fillData(shm_array length); // Sort the created array mergeSort(shm_array 0 length - 1); // Check if array is sorted or not isSorted(shm_array length); /* Detach from the shared memory now that we are done using it. */ if (shmdt(shm_array) == -1) { perror('shmdt'); _exit(1); } /* Delete the shared memory segment. */ if (shmctl(shmid IPC_RMID NULL) == -1) { perror('shmctl'); _exit(1); } return 0; }
Java import java.util.Arrays; import java.util.Random; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; public class ConcurrentMergeSort { // Method to merge sorted subarrays private static void merge(int[] a int low int mid int high) { int[] temp = new int[high - low + 1]; int i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } System.arraycopy(temp 0 a low temp.length); } // RecursiveAction for fork/join framework static class SortTask extends RecursiveAction { private final int[] a; private final int low high; SortTask(int[] a int low int high) { this.a = a; this.low = low; this.high = high; } @Override protected void compute() { if (high - low <= 5) { Arrays.sort(a low high + 1); } else { int mid = low + (high - low) / 2; invokeAll(new SortTask(a low mid) new SortTask(a mid + 1 high)); merge(a low mid high); } } } // Method to check if array is sorted private static boolean isSorted(int[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Method to fill array with random numbers private static void fillData(int[] a) { Random rand = new Random(); for (int i = 0; i < a.length; i++) { a[i] = rand.nextInt(); } } public static void main(String[] args) { int length = 128; int[] a = new int[length]; fillData(a); ForkJoinPool pool = new ForkJoinPool(); pool.invoke(new SortTask(a 0 a.length - 1)); if (isSorted(a)) { System.out.println('Sorting Done Successfully'); } else { System.out.println('Sorting Not Done'); } } }
Python3 import numpy as np import multiprocessing as mp import time def insertion_sort(arr): n = len(arr) for i in range(1 n): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key def merge(arr l mid r): n1 = mid - l + 1 n2 = r - mid L = arr[l:l + n1].copy() R = arr[mid + 1:mid + 1 + n2].copy() i = j = 0 k = l while i < n1 and j < n2: if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < n1: arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[j] j += 1 k += 1 def merge_sort(arr l r): if l < r: if r - l + 1 <= 5: insertion_sort(arr) else: mid = (l + r) // 2 p1 = mp.Process(target=merge_sort args=(arr l mid)) p2 = mp.Process(target=merge_sort args=(arr mid + 1 r)) p1.start() p2.start() p1.join() p2.join() merge(arr l mid r) def is_sorted(arr): for i in range(1 len(arr)): if arr[i] < arr[i - 1]: return False return True def fill_data(arr): np.random.seed(0) arr[:] = np.random.randint(0 1000 size=len(arr)) if __name__ == '__main__': length = 128 shm_array = mp.Array('i' length) fill_data(shm_array) start_time = time.time() merge_sort(shm_array 0 length - 1) end_time = time.time() if is_sorted(shm_array): print('Sorting Done Successfully') else: print('Sorting Not Done') print('Time taken:' end_time - start_time)
JavaScript // Importing required modules const { Worker isMainThread parentPort workerData } = require('worker_threads'); // Function to merge sorted subarrays function merge(a low mid high) { let temp = new Array(high - low + 1); let i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } for (let p = 0; p < temp.length; p++) { a[low + p] = temp[p]; } } // Function to check if array is sorted function isSorted(a) { for (let i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Function to fill array with random numbers function fillData(a) { for (let i = 0; i < a.length; i++) { a[i] = Math.floor(Math.random() * 1000); } } // Function to sort the array using merge sort function sortArray(a low high) { if (high - low <= 5) { a.sort((a b) => a - b); } else { let mid = low + Math.floor((high - low) / 2); sortArray(a low mid); sortArray(a mid + 1 high); merge(a low mid high); } } // Main function function main() { let length = 128; let a = new Array(length); fillData(a); sortArray(a 0 a.length - 1); if (isSorted(a)) { console.log('Sorting Done Successfully'); } else { console.log('Sorting Not Done'); } } main();
Ieșire:
Sorting Done Successfully
Complexitatea timpului:O(N log N)
Spațiu auxiliar: O(N)
Îmbunătățiri de performanță?
Încercați să cronometrați codul și să comparați performanța acestuia cu codul secvențial tradițional. Ai fi surprins să afli că performanța sortării secvențiale este mai bună!
Când spunem accesul copilului stâng la matricea din stânga, matricea este încărcată în memoria cache a unui procesor. Acum, când se accesează matricea din dreapta (din cauza acceselor concurente) există o pierdere de cache, deoarece memoria cache este umplută cu segmentul din stânga și apoi segmentul din dreapta este copiat în memoria cache. Acest proces dus-întors continuă și degradează performanța la un astfel de nivel încât are performanțe mai slabe decât codul secvenţial.
Există modalități de a reduce pierderile de cache prin controlul fluxului de lucru al codului. Dar ele nu pot fi evitate complet!