logo

Ce este Tail Recursion

Recursie coadă este definită ca o funcție recursivă în care apelul recursiv este ultima instrucțiune care este executată de funcție. Deci practic nu mai rămâne nimic de executat după apelul recursiv.

De exemplu, următoarea funcție C++ print() este recursivă coadă.



C








// An example of tail recursive function> void> print(>int> n)> {> >if> (n <0)> >return>;> >printf>(>'%d '>, n);> >// The last executed statement is recursive call> >print(n - 1);> }>

>

>

C++




// An example of tail recursive function> static> void> print(>int> n)> {> >if> (n <0)> >return>;> >cout <<>' '> << n;> > >// The last executed statement is recursive call> >print(n - 1);> }> // This code is contributed by Aman Kumar>

>

>

Java




// An example of tail recursive function> static> void> print(>int> n)> {> >if> (n <>0>)> >return>;> >System.out.print(>' '> + n);> >// The last executed statement> >// is recursive call> >print(n ->1>);> }> // This code is contributed by divyeh072019>

>

>

Python3




# An example of tail recursive function> def> prints(n):> >if> (n <>0>):> >return> >print>(>str>(n), end>=>' '>)> ># The last executed statement is recursive call> >prints(n>->1>)> ># This code is contributed by Pratham76> ># improved by ashish2021>

>

>

C#




// An example of tail recursive function> static> void> print(>int> n)> {> >if> (n <0)> >return>;> >Console.Write(>' '> + n);> >// The last executed statement> >// is recursive call> >print(n - 1);> }> // This code is contributed by divyeshrabadiya07>

>

>

Javascript




> // An example of tail recursive function> function> print(n)> {> >if> (n <0)> >return>;> > >document.write(>' '> + n);> > >// The last executed statement> >// is recursive call> >print(n - 1);> }> // This code is contributed by Rajput-Ji> >

>

>

Complexitatea timpului: Pe)
Spațiu auxiliar: Pe)

Nevoia recursiunii cozii:

Funcțiile recursive tail sunt considerate mai bune decât funcțiile recursive non-tail, deoarece recursiunea coadă poate fi optimizată de compilator.

Compilatorii execută de obicei proceduri recursive folosind a grămadă . Această stivă constă din toate informațiile pertinente, inclusiv valorile parametrilor, pentru fiecare apel recursiv. Când o procedură este apelată, informațiile acesteia sunt împins pe o stivă, iar când funcția se termină, informațiile sunt a izbucnit din stivă. Astfel, pentru funcțiile non-coada recursive, the adâncimea stivei (cantitatea maximă de spațiu de stivă utilizată în orice moment în timpul compilării) este mai mare.

Ideea folosită de compilatori pentru a optimiza funcțiile recursive de coadă este simplă, deoarece apelul recursiv este ultima instrucțiune, nu mai este nimic de făcut în funcția curentă, așa că salvarea cadrului de stivă a funcției curente nu este de folos (vezi aceasta pentru mai multe Detalii).

Poate fi scrisă o funcție non-recursivă coadă ca recursiv coadă pentru a o optimiza?

Luați în considerare următoarea funcție pentru a calcula factorialul lui n.

Este o funcție non-coada recursivă. Deși pare o coadă recursivă la prima vedere. Dacă aruncăm o privire mai atentă, putem vedea că valoarea returnată de fact(n-1) este folosită în fapt (n) . Deci apelul la fapt (n-1) nu este ultimul lucru făcut de fapt (n) .

C++




#include> using> namespace> std;> // A NON-tail-recursive function. The function is not tail> // recursive because the value returned by fact(n-1) is used> // in fact(n) and call to fact(n-1) is not the last thing> // done by fact(n)> unsigned>int> fact(unsigned>int> n)> {> >if> (n <= 0)> >return> 1;> >return> n * fact(n - 1);> }> // Driver program to test above function> int> main()> {> >cout << fact(5);> >return> 0;> }>

>

>

Java




class> GFG {> >// A NON-tail-recursive function.> >// The function is not tail> >// recursive because the value> >// returned by fact(n-1) is used> >// in fact(n) and call to fact(n-1)> >// is not the last thing done by> >// fact(n)> >static> int> fact(>int> n)> >{> >if> (n ==>0>)> >return> 1>;> >return> n * fact(n ->1>);> >}> >// Driver program> >public> static> void> main(String[] args)> >{> >System.out.println(fact(>5>));> >}> }> // This code is contributed by Smitha.>

>

>

Python3




# A NON-tail-recursive function.> # The function is not tail> # recursive because the value> # returned by fact(n-1) is used> # in fact(n) and call to fact(n-1)> # is not the last thing done by> # fact(n)> def> fact(n):> >if> (n>=>=> 0>):> >return> 1> >return> n>*> fact(n>->1>)> # Driver program to test> # above function> if> __name__>=>=> '__main__'>:> >print>(fact(>5>))> # This code is contributed by Smitha.>

>

>

C#




using> System;> class> GFG {> >// A NON-tail-recursive function.> >// The function is not tail> >// recursive because the value> >// returned by fact(n-1) is used> >// in fact(n) and call to fact(n-1)> >// is not the last thing done by> >// fact(n)> >static> int> fact(>int> n)> >{> >if> (n == 0)> >return> 1;> >return> n * fact(n - 1);> >}> >// Driver program to test> >// above function> >public> static> void> Main() { Console.Write(fact(5)); }> }> // This code is contributed by Smitha>

>

>

PHP




// A NON-tail-recursive function. // The function is not tail // recursive because the value // returned by fact(n-1) is used in // fact(n) and call to fact(n-1) is // not the last thing done by fact(n) function fact( $n) { if ($n == 0) return 1; return $n * fact($n - 1); } // Driver Code echo fact(5); // This code is contributed by Ajit ?>>>>

> 




> // A NON-tail-recursive function.> // The function is not tail> // recursive because the value> // returned by fact(n-1) is used> // in fact(n) and call to fact(n-1)> // is not the last thing done by> // fact(n)> function> fact(n)> {> >if> (n == 0)> >return> 1;> > >return> n * fact(n - 1);> }> // Driver code> document.write(fact(5));> // This code is contributed by divyeshrabadiya07> >

>

>

Ieșire

120>

Complexitatea timpului: Pe)
Spațiu auxiliar: Pe)

Funcția de mai sus poate fi scrisă ca o funcție recursivă de coadă. Ideea este să folosiți încă un argument și să acumulați valoarea factorială în al doilea argument. Când n ajunge la 0, returnează valoarea acumulată.

Mai jos este implementarea folosind o funcție recursivă de coadă.

C++




#include> using> namespace> std;> // A tail recursive function to calculate factorial> unsigned factTR(unsigned>int> n, unsigned>int> a)> {> >if> (n <= 1)> >return> a;> >return> factTR(n - 1, n * a);> }> // A wrapper over factTR> unsigned>int> fact(unsigned>int> n) {>return> factTR(n, 1); }> // Driver program to test above function> int> main()> {> >cout << fact(5);> >return> 0;> }>

>

>

Java




// Java Code for Tail Recursion> class> GFG {> >// A tail recursive function> >// to calculate factorial> >static> int> factTR(>int> n,>int> a)> >{> >if> (n <=>0>)> >return> a;> >return> factTR(n ->1>, n * a);> >}> >// A wrapper over factTR> >static> int> fact(>int> n) {>return> factTR(n,>1>); }> >// Driver code> >static> public> void> main(String[] args)> >{> >System.out.println(fact(>5>));> >}> }> // This code is contributed by Smitha.>

>

actor ranbir kapoor varsta
>

Python3




# A tail recursive function> # to calculate factorial> def> fact(n, a>=>1>):> >if> (n <>=> 1>):> >return> a> >return> fact(n>-> 1>, n>*> a)> # Driver program to test> # above function> print>(fact(>5>))> # This code is contributed> # by Smitha> # improved by Ujwal, ashish2021>

>

>

C#




// C# Code for Tail Recursion> using> System;> class> GFG {> >// A tail recursive function> >// to calculate factorial> >static> int> factTR(>int> n,>int> a)> >{> >if> (n <= 0)> >return> a;> >return> factTR(n - 1, n * a);> >}> >// A wrapper over factTR> >static> int> fact(>int> n) {>return> factTR(n, 1); }> >// Driver code> >static> public> void> Main()> >{> >Console.WriteLine(fact(5));> >}> }> // This code is contributed by Ajit.>

>

>

PHP




// A tail recursive function // to calculate factorial function factTR($n, $a) { if ($n <= 0) return $a; return factTR($n - 1, $n * $a); } // A wrapper over factTR function fact($n) { return factTR($n, 1); } // Driver program to test // above function echo fact(5); // This code is contributed // by Smitha ?>>>>

> 




> // Javascript Code for Tail Recursion> // A tail recursive function> // to calculate factorial> function> factTR(n, a)> {> >if> (n <= 0)> >return> a;> > >return> factTR(n - 1, n * a);> }> > // A wrapper over factTR> function> fact(n)> {> >return> factTR(n, 1);> }> // Driver code> document.write(fact(5));> // This code is contributed by rameshtravel07> > >

>

>

Ieșire

120>

Complexitatea timpului: Pe)
Spațiu auxiliar: O(1)

Următoarele articole pe această temă:

  • Eliminarea apelului de coadă
  • Optimizare QuickSort Tail Call (reducerea spațiului în cel mai rău caz la Log n )