logo

Sortare arbore

Sortirea copacilor este un algoritm de sortare care se bazează pe Arborele de căutare binar structura datelor. Mai întâi creează un arbore de căutare binar din elementele listei de intrare sau ale matricei și apoi efectuează o traversare în ordine pe arborele de căutare binar creat pentru a obține elementele în ordinea sortată. 

Algoritm:  

    Pasul 1:Luați elementele introduse într-o matrice.Pasul 2:Creați un arbore de căutare binar inserând elemente de date din matrice în arbore binar de căutare .Pasul 3:Efectuați traversarea în ordine a arborelui pentru a obține elementele în ordine sortată.

Aplicații ale sortării arborelui:

  • Utilizarea sa cea mai comună este editarea elementelor online: după fiecare instalare un set de obiecte văzute până acum este disponibil într-un program structurat.
  • Dacă utilizați un arbore splay ca arbore binar de căutare, algoritmul rezultat (numit splaysort) are o proprietate suplimentară că este o sortare adaptivă, ceea ce înseamnă că timpul său de lucru este mai rapid decât O (n log n) pentru intrările virtuale.

Mai jos este implementarea abordării de mai sus:



C++
// C++ program to implement Tree Sort #include   using namespace std; struct Node {  int key;  struct Node *left *right; }; // A utility function to create a new BST Node struct Node *newNode(int item) {  struct Node *temp = new Node;  temp->key = item;  temp->left = temp->right = NULL;  return temp; } // Stores inorder traversal of the BST // in arr[] void storeSorted(Node *root int arr[] int &i) {  if (root != NULL)  {  storeSorted(root->left arr i);  arr[i++] = root->key;  storeSorted(root->right arr i);  } } /* A utility function to insert a new  Node with given key in BST */ Node* insert(Node* node int key) {  /* If the tree is empty return a new Node */  if (node == NULL) return newNode(key);  /* Otherwise recur down the tree */  if (key < node->key)  node->left = insert(node->left key);  else if (key > node->key)  node->right = insert(node->right key);  /* return the (unchanged) Node pointer */  return node; } // This function sorts arr[0..n-1] using Tree Sort void treeSort(int arr[] int n) {  struct Node *root = NULL;  // Construct the BST  root = insert(root arr[0]);  for (int i=1; i<n; i++)  root = insert(root arr[i]);  // Store inorder traversal of the BST  // in arr[]  int i = 0;  storeSorted(root arr i); } // Driver Program to test above functions int main() {  //create input array  int arr[] = {5 4 7 2 11};  int n = sizeof(arr)/sizeof(arr[0]);  treeSort(arr n);  for (int i=0; i<n; i++)  cout << arr[i] << ' ';  return 0; } 
Java
// Java program to  // implement Tree Sort class GFG  {  // Class containing left and  // right child of current   // node and key value  class Node   {  int key;  Node left right;  public Node(int item)   {  key = item;  left = right = null;  }  }  // Root of BST  Node root;  // Constructor  GFG()   {   root = null;   }  // This method mainly  // calls insertRec()  void insert(int key)  {  root = insertRec(root key);  }    /* A recursive function to   insert a new key in BST */  Node insertRec(Node root int key)   {  /* If the tree is empty  return a new node */  if (root == null)   {  root = new Node(key);  return root;  }  /* Otherwise recur  down the tree */  if (key < root.key)  root.left = insertRec(root.left key);  else if (key > root.key)  root.right = insertRec(root.right key);  /* return the root */  return root;  }    // A function to do   // inorder traversal of BST  void inorderRec(Node root)   {  if (root != null)   {  inorderRec(root.left);  System.out.print(root.key + ' ');  inorderRec(root.right);  }  }  void treeins(int arr[])  {  for(int i = 0; i < arr.length; i++)  {  insert(arr[i]);  }    }  // Driver Code  public static void main(String[] args)   {  GFG tree = new GFG();  int arr[] = {5 4 7 2 11};  tree.treeins(arr);  tree.inorderRec(tree.root);  } } // This code is contributed // by Vibin M 
Python3
# Python3 program to  # implement Tree Sort # Class containing left and # right child of current  # node and key value class Node: def __init__(selfitem = 0): self.key = item self.leftself.right = NoneNone # Root of BST root = Node() root = None # This method mainly # calls insertRec() def insert(key): global root root = insertRec(root key) # A recursive function to  # insert a new key in BST def insertRec(root key): # If the tree is empty # return a new node if (root == None): root = Node(key) return root # Otherwise recur # down the tree  if (key < root.key): root.left = insertRec(root.left key) elif (key > root.key): root.right = insertRec(root.right key) # return the root return root # A function to do  # inorder traversal of BST def inorderRec(root): if (root != None): inorderRec(root.left) print(root.key end = ' ') inorderRec(root.right) def treeins(arr): for i in range(len(arr)): insert(arr[i]) # Driver Code arr = [5 4 7 2 11] treeins(arr) inorderRec(root) # This code is contributed by shinjanpatra 
C#
// C# program to  // implement Tree Sort using System; public class GFG  {  // Class containing left and  // right child of current   // node and key value  public class Node   {  public int key;  public Node left right;  public Node(int item)   {  key = item;  left = right = null;  }  }  // Root of BST  Node root;  // Constructor  GFG()   {   root = null;   }  // This method mainly  // calls insertRec()  void insert(int key)  {  root = insertRec(root key);  }  /* A recursive function to   insert a new key in BST */  Node insertRec(Node root int key)   {  /* If the tree is empty  return a new node */  if (root == null)   {  root = new Node(key);  return root;  }  /* Otherwise recur  down the tree */  if (key < root.key)  root.left = insertRec(root.left key);  else if (key > root.key)  root.right = insertRec(root.right key);  /* return the root */  return root;  }  // A function to do   // inorder traversal of BST  void inorderRec(Node root)   {  if (root != null)   {  inorderRec(root.left);  Console.Write(root.key + ' ');  inorderRec(root.right);  }  }  void treeins(int []arr)  {  for(int i = 0; i < arr.Length; i++)  {  insert(arr[i]);  }  }  // Driver Code  public static void Main(String[] args)   {  GFG tree = new GFG();  int []arr = {5 4 7 2 11};  tree.treeins(arr);  tree.inorderRec(tree.root);  } } // This code is contributed by Rajput-Ji  
JavaScript
<script> // Javascript program to  // implement Tree Sort // Class containing left and // right child of current  // node and key value class Node {  constructor(item) {  this.key = item;  this.left = this.right = null;  } } // Root of BST let root = new Node(); root = null; // This method mainly // calls insertRec() function insert(key) {  root = insertRec(root key); } /* A recursive function to  insert a new key in BST */ function insertRec(root key) {  /* If the tree is empty  return a new node */  if (root == null) {  root = new Node(key);  return root;  }  /* Otherwise recur  down the tree */  if (key < root.key)  root.left = insertRec(root.left key);  else if (key > root.key)  root.right = insertRec(root.right key);  /* return the root */  return root; } // A function to do  // inorder traversal of BST function inorderRec(root) {  if (root != null) {  inorderRec(root.left);  document.write(root.key + ' ');  inorderRec(root.right);  } } function treeins(arr) {  for (let i = 0; i < arr.length; i++) {  insert(arr[i]);  } } // Driver Code let arr = [5 4 7 2 11]; treeins(arr); inorderRec(root); // This code is contributed // by Saurabh Jaiswal </script> 

Ieșire
2 4 5 7 11 

Analiza complexității:

Complexitatea timpului mediu al cazului: O(n log n) Adăugarea unui element la un arbore de căutare binar durează în medie O(log n) timp. Prin urmare, adăugarea a n elemente va dura O(n log n) timp

Complexitatea timpului cel mai rău caz: Pe2). Cel mai rău caz, complexitatea de timp a Tree Sort poate fi îmbunătățită prin utilizarea unui arbore de căutare binar cu auto-echilibrare, cum ar fi Red Black Tree AVL Tree. Utilizarea arborelui binar cu auto-echilibrare Tree Sort va dura O(n log n) timp pentru a sorta matricea în cel mai rău caz. 

Spațiu auxiliar: Pe)