logo

Arborele binar cu filet | Inserare

Am discutat deja despre Arborele binar cu filet binar .
Inserarea în arborele binar este similară cu inserarea în arborele binar, dar va trebui să ajustam firele după inserarea fiecărui element.

Reprezentarea C a nodului cu filet binar: 

struct Node { struct Node *left *right; int info; // false if left pointer points to predecessor // in Inorder Traversal boolean lthread; // false if right pointer points to successor // in Inorder Traversal boolean rthread; };

În explicația următoare am luat în considerare Arborele de căutare binar (BST) pentru inserare, deoarece inserarea este definită de unele reguli în BST-uri.
Lasă tmp fi nodul nou introdus . Pot exista trei cazuri în timpul inserării:



Cazul 1: Inserarea în arbore gol  

Ambele pointerii stânga și dreapta ale tmp vor fi setate la NULL și noul nod devine rădăcină. 

pyspark sql
root = tmp; tmp -> left = NULL; tmp -> right = NULL;

Cazul 2: Când noul nod este introdus ca copil stâng  

După introducerea nodului la locul său, trebuie să facem ca firele din stânga și din dreapta să fie punctate către predecesor și, respectiv, succesor. Nodul care a fost succesor in ordine . Deci firele din stânga și din dreapta ale noului nod vor fi- 

java string.format
tmp -> left = par ->left; tmp -> right = par;

Înainte de inserare, indicatorul din stânga al părintelui era un fir de execuție, dar după inserare va fi un link care indică noul nod. 

par -> lthread = false; par -> left = temp;

Următorul exemplu arată un nod care este inserat ca fiul stâng al părintelui său. 
 

Arborele binar cu filet | Inserare


După introducerea lui 13 
 

Arborele binar cu filet | Inserare


Predecesorul lui 14 devine predecesorul lui 13, așa că a lăsat firul de 13 puncte la 10. 
Succesorul lui 13 este 14, deci firul din dreapta de 13 puncte la copilul stâng, care este 13. 
Indicatorul stânga al lui 14 nu este un fir, acum indică spre copilul din stânga, care este 13.

Cazul 3: Când noul nod este introdus ca copil potrivit  

sfoară în c

Părinte tmp este predecesorul său în ordine. Nodul care a fost succesorul în ordine al părintelui este acum succesorul în ordine al acestui nod tmp. Deci firele din stânga și din dreapta ale noului nod vor fi- 

tmp -> left = par; tmp -> right = par -> right;

Înainte de inserare, indicatorul drept al părintelui era un fir de execuție, dar după inserare va fi un link care indică noul nod. 

par -> rthread = false; par -> right = tmp;

Următorul exemplu arată un nod care este inserat ca copil drept al părintelui său. 
 

15 din 100.00

Arborele binar cu filet | Inserare


După 15 introduse 
 

Arborele binar cu filet | Inserare


Succesorul lui 14 devine succesorul lui 15, așa că firul din dreapta de 15 puncte la 16 
Predecesorul lui 15 este 14, așa că a lăsat firul de 15 puncte la 14. 
Indicatorul drept al lui 14 nu este un fir, acum indică spre copilul drept, care are 15.

Implementarea C++ pentru a insera un nou nod în Arborele de căutare binar cu thread-uri:  
Ca insert standard BST căutăm valoarea cheie în arbore. Dacă cheia este deja prezentă, revenim, altfel noua cheie este inserată în punctul în care se încheie căutarea. În BST căutarea se termină fie când găsim cheia, fie când ajungem la un indicator NULL stânga sau dreapta. Aici toți pointerii NULL stânga și dreapta sunt înlocuiți cu fire de execuție, cu excepția indicatorului stâng al primului nod și indicatorului drept al ultimului nod. Deci aici căutarea nu va avea succes atunci când ajungem la un pointer NULL sau la un fir.

Implementare:

arraylist și linkedlist
C++
// Insertion in Threaded Binary Search Tree. #include   using namespace std; struct Node {  struct Node *left *right;  int info;  // False if left pointer points to predecessor  // in Inorder Traversal  bool lthread;  // False if right pointer points to successor  // in Inorder Traversal  bool rthread; }; // Insert a Node in Binary Threaded Tree struct Node *insert(struct Node *root int ikey) {  // Searching for a Node with given value  Node *ptr = root;  Node *par = NULL; // Parent of key to be inserted  while (ptr != NULL)  {  // If key already exists return  if (ikey == (ptr->info))  {  printf('Duplicate Key !n');  return root;  }  par = ptr; // Update parent pointer  // Moving on left subtree.  if (ikey < ptr->info)  {  if (ptr -> lthread == false)  ptr = ptr -> left;  else  break;  }  // Moving on right subtree.  else  {  if (ptr->rthread == false)  ptr = ptr -> right;  else  break;  }  }  // Create a new node  Node *tmp = new Node;  tmp -> info = ikey;  tmp -> lthread = true;  tmp -> rthread = true;  if (par == NULL)  {  root = tmp;  tmp -> left = NULL;  tmp -> right = NULL;  }  else if (ikey < (par -> info))  {  tmp -> left = par -> left;  tmp -> right = par;  par -> lthread = false;  par -> left = tmp;  }  else  {  tmp -> left = par;  tmp -> right = par -> right;  par -> rthread = false;  par -> right = tmp;  }  return root; } // Returns inorder successor using rthread struct Node *inorderSuccessor(struct Node *ptr) {  // If rthread is set we can quickly find  if (ptr -> rthread == true)  return ptr->right;  // Else return leftmost child of right subtree  ptr = ptr -> right;  while (ptr -> lthread == false)  ptr = ptr -> left;  return ptr; } // Printing the threaded tree void inorder(struct Node *root) {  if (root == NULL)  printf('Tree is empty');  // Reach leftmost node  struct Node *ptr = root;  while (ptr -> lthread == false)  ptr = ptr -> left;  // One by one print successors  while (ptr != NULL)  {  printf('%d 'ptr -> info);  ptr = inorderSuccessor(ptr);  } } // Driver Program int main() {  struct Node *root = NULL;  root = insert(root 20);  root = insert(root 10);  root = insert(root 30);  root = insert(root 5);  root = insert(root 16);  root = insert(root 14);  root = insert(root 17);  root = insert(root 13);  inorder(root);  return 0; } 
Java
// Java program Insertion in Threaded Binary Search Tree.  import java.util.*; public class solution { static class Node  {   Node left right;   int info;     // False if left pointer points to predecessor   // in Inorder Traversal   boolean lthread;     // False if right pointer points to successor   // in Inorder Traversal   boolean rthread;  };    // Insert a Node in Binary Threaded Tree  static Node insert( Node root int ikey)  {   // Searching for a Node with given value   Node ptr = root;   Node par = null; // Parent of key to be inserted   while (ptr != null)   {   // If key already exists return   if (ikey == (ptr.info))   {   System.out.printf('Duplicate Key !n');   return root;   }     par = ptr; // Update parent pointer     // Moving on left subtree.   if (ikey < ptr.info)   {   if (ptr . lthread == false)   ptr = ptr . left;   else  break;   }     // Moving on right subtree.   else  {   if (ptr.rthread == false)   ptr = ptr . right;   else  break;   }   }     // Create a new node   Node tmp = new Node();   tmp . info = ikey;   tmp . lthread = true;   tmp . rthread = true;     if (par == null)   {   root = tmp;   tmp . left = null;   tmp . right = null;   }   else if (ikey < (par . info))   {   tmp . left = par . left;   tmp . right = par;   par . lthread = false;   par . left = tmp;   }   else  {   tmp . left = par;   tmp . right = par . right;   par . rthread = false;   par . right = tmp;   }     return root;  }    // Returns inorder successor using rthread  static Node inorderSuccessor( Node ptr)  {   // If rthread is set we can quickly find   if (ptr . rthread == true)   return ptr.right;     // Else return leftmost child of right subtree   ptr = ptr . right;   while (ptr . lthread == false)   ptr = ptr . left;   return ptr;  }    // Printing the threaded tree  static void inorder( Node root)  {   if (root == null)   System.out.printf('Tree is empty');     // Reach leftmost node   Node ptr = root;   while (ptr . lthread == false)   ptr = ptr . left;     // One by one print successors   while (ptr != null)   {   System.out.printf('%d 'ptr . info);   ptr = inorderSuccessor(ptr);   }  }    // Driver Program  public static void main(String[] args) {   Node root = null;     root = insert(root 20);   root = insert(root 10);   root = insert(root 30);   root = insert(root 5);   root = insert(root 16);   root = insert(root 14);   root = insert(root 17);   root = insert(root 13);     inorder(root);  }  } //contributed by Arnab Kundu // This code is updated By Susobhan Akhuli 
Python3
# Insertion in Threaded Binary Search Tree.  class newNode: def __init__(self key): # False if left pointer points to  # predecessor in Inorder Traversal  self.info = key self.left = None self.right =None self.lthread = True # False if right pointer points to  # successor in Inorder Traversal  self.rthread = True # Insert a Node in Binary Threaded Tree  def insert(root ikey): # Searching for a Node with given value  ptr = root par = None # Parent of key to be inserted  while ptr != None: # If key already exists return  if ikey == (ptr.info): print('Duplicate Key !') return root par = ptr # Update parent pointer  # Moving on left subtree.  if ikey < ptr.info: if ptr.lthread == False: ptr = ptr.left else: break # Moving on right subtree.  else: if ptr.rthread == False: ptr = ptr.right else: break # Create a new node  tmp = newNode(ikey) if par == None: root = tmp tmp.left = None tmp.right = None elif ikey < (par.info): tmp.left = par.left tmp.right = par par.lthread = False par.left = tmp else: tmp.left = par tmp.right = par.right par.rthread = False par.right = tmp return root # Returns inorder successor using rthread  def inorderSuccessor(ptr): # If rthread is set we can quickly find  if ptr.rthread == True: return ptr.right # Else return leftmost child of  # right subtree  ptr = ptr.right while ptr.lthread == False: ptr = ptr.left return ptr # Printing the threaded tree  def inorder(root): if root == None: print('Tree is empty') # Reach leftmost node  ptr = root while ptr.lthread == False: ptr = ptr.left # One by one print successors  while ptr != None: print(ptr.infoend=' ') ptr = inorderSuccessor(ptr) # Driver Code if __name__ == '__main__': root = None root = insert(root 20) root = insert(root 10) root = insert(root 30) root = insert(root 5) root = insert(root 16) root = insert(root 14) root = insert(root 17) root = insert(root 13) inorder(root) # This code is contributed by PranchalK 
C#
using System; // C# program Insertion in Threaded Binary Search Tree.  public class solution { public class Node {  public Node left right;  public int info;  // False if left pointer points to predecessor   // in Inorder Traversal   public bool lthread;  // False if right pointer points to successor   // in Inorder Traversal   public bool rthread; } // Insert a Node in Binary Threaded Tree  public static Node insert(Node root int ikey) {  // Searching for a Node with given value   Node ptr = root;  Node par = null; // Parent of key to be inserted  while (ptr != null)  {  // If key already exists return   if (ikey == (ptr.info))  {  Console.Write('Duplicate Key !n');  return root;  }  par = ptr; // Update parent pointer  // Moving on left subtree.   if (ikey < ptr.info)  {  if (ptr.lthread == false)  {  ptr = ptr.left;  }  else  {  break;  }  }  // Moving on right subtree.   else  {  if (ptr.rthread == false)  {  ptr = ptr.right;  }  else  {  break;  }  }  }  // Create a new node   Node tmp = new Node();  tmp.info = ikey;  tmp.lthread = true;  tmp.rthread = true;  if (par == null)  {  root = tmp;  tmp.left = null;  tmp.right = null;  }  else if (ikey < (par.info))  {  tmp.left = par.left;  tmp.right = par;  par.lthread = false;  par.left = tmp;  }  else  {  tmp.left = par;  tmp.right = par.right;  par.rthread = false;  par.right = tmp;  }  return root; } // Returns inorder successor using rthread  public static Node inorderSuccessor(Node ptr) {  // If rthread is set we can quickly find   if (ptr.rthread == true)  {  return ptr.right;  }  // Else return leftmost child of right subtree   ptr = ptr.right;  while (ptr.lthread == false)  {  ptr = ptr.left;  }  return ptr; } // Printing the threaded tree  public static void inorder(Node root) {  if (root == null)  {  Console.Write('Tree is empty');  }  // Reach leftmost node   Node ptr = root;  while (ptr.lthread == false)  {  ptr = ptr.left;  }  // One by one print successors   while (ptr != null)  {  Console.Write('{0:D} 'ptr.info);  ptr = inorderSuccessor(ptr);  } } // Driver Program  public static void Main(string[] args) {  Node root = null;  root = insert(root 20);  root = insert(root 10);  root = insert(root 30);  root = insert(root 5);  root = insert(root 16);  root = insert(root 14);  root = insert(root 17);  root = insert(root 13);  inorder(root); } }  // This code is contributed by Shrikant13 
JavaScript
<script> // javascript program Insertion in Threaded Binary Search Tree.   class Node {  constructor(){ this.left = null this.right = null;  this.info = 0;  // False if left pointer points to predecessor  // in Inorder Traversal  this.lthread = false;  // False if right pointer points to successor  // in Inorder Traversal  this.rthread = false;  }  }  // Insert a Node in Binary Threaded Tree  function insert(root  ikey) {  // Searching for a Node with given value var ptr = root; var par = null; // Parent of key to be inserted  while (ptr != null) {  // If key already exists return  if (ikey == (ptr.info)) {  document.write('Duplicate Key !n');  return root;  }  par = ptr; // Update parent pointer  // Moving on left subtree.  if (ikey < ptr.info) {  if (ptr.lthread == false)  ptr = ptr.left;  else  break;  }  // Moving on right subtree.  else {  if (ptr.rthread == false)  ptr = ptr.right;  else  break;  }  }  // Create a new node var tmp = new Node();  tmp.info = ikey;  tmp.lthread = true;  tmp.rthread = true;  if (par == null) {  root = tmp;  tmp.left = null;  tmp.right = null;  } else if (ikey < (par.info)) {  tmp.left = par.left;  tmp.right = par;  par.lthread = false;  par.left = tmp;  } else {  tmp.left = par;  tmp.right = par.right;  par.rthread = false;  par.right = tmp;  }  return root;  }  // Returns inorder successor using rthread  function inorderSuccessor(ptr) {  // If rthread is set we can quickly find  if (ptr.rthread == true)  return ptr.right;  // Else return leftmost child of right subtree  ptr = ptr.right;  while (ptr.lthread == false)  ptr = ptr.left;  return ptr;  }  // Printing the threaded tree  function inorder(root) {  if (root == null)  document.write('Tree is empty');  // Reach leftmost node var ptr = root;  while (ptr.lthread == false)  ptr = ptr.left;  // One by one print successors  while (ptr != null) {  document.write(ptr.info+' ');  ptr = inorderSuccessor(ptr);  }  }  // Driver Program   var root = null;  root = insert(root 20);  root = insert(root 10);  root = insert(root 30);  root = insert(root 5);  root = insert(root 16);  root = insert(root 14);  root = insert(root 17);  root = insert(root 13);  inorder(root); // This code contributed by aashish1995 </script> 

Ieșire
5 10 13 14 16 17 20 30 

Complexitatea timpului: O(log N)

Complexitatea spațiului: O(1) deoarece nu este folosit spațiu suplimentar.

 

Creați un test