logo

Găsiți indicele numărului Fibonacci dat în timp constant

Ni se dă un numărul Fibonacci . Primele numere Fibonacci sunt 0 1 1 2 3 5 8 13 21 34 55 89 144 ..... 
Trebuie să găsim indicele numărului Fibonacci dat, adică așa cum numărul Fibonacci 8 este la indicele 6. 

Exemple:  

Input : 13  
Output : 7
Input : 34
Output : 9

Metoda 1 (simplu)  : O abordare simplă este să găsiți numerele Fibonacci până la numerele Fibonacci date și să numărați numărul de iterații efectuate.



C++
// A simple C++ program to find index of given // Fibonacci number. #include   int findIndex(int n) {  // if Fibonacci number is less than 2  // its index will be same as number  if (n <= 1)  return n;  int a = 0 b = 1 c = 1;  int res = 1;  // iterate until generated fibonacci number   // is less than given fibonacci number  while (c < n)  {  c = a + b;    // res keeps track of number of generated   // fibonacci number  res++;  a = b;  b = c;  }  return res; } // Driver program to test above function int main() {  int result = findIndex(21);  printf('%dn' result); } // This code is contributed by Saket Kumar 
Java
// A simple Java program to find index of  // given Fibonacci number. import java.io.*; class GFG {    static int findIndex(int n)  {    // if Fibonacci number is less   // than 2 its index will be  // same as number  if (n <= 1)  return n;    int a = 0 b = 1 c = 1;  int res = 1;    // iterate until generated fibonacci  // number is less than given   // fibonacci number  while (c < n)  {  c = a + b;    // res keeps track of number of  // generated fibonacci number  res++;  a = b;  b = c;  }    return res;  }    // Driver program to test above function  public static void main (String[] args)   {  int result = findIndex(21);  System.out.println( result);  } } // This code is contributed by anuj_67. 
Python3
# A simple Python 3 program to find  # index of given Fibonacci number. def findIndex(n) : # if Fibonacci number is less than 2 # its index will be same as number if (n <= 1) : return n a = 0 b = 1 c = 1 res = 1 # iterate until generated fibonacci number  # is less than given fibonacci number while (c < n) : c = a + b # res keeps track of number of  # generated fibonacci number res = res + 1 a = b b = c return res # Driver program to test above function result = findIndex(21) print(result) # this code is contributed by Nikita Tiwari 
C#
// A simple C# program to  // find index of given  // Fibonacci number. using System; class GFG  {  static int findIndex(int n)  {    // if Fibonacci number   // is less than 2 its   // index will be same   // as number  if (n <= 1)  return n;    int a = 0 b = 1 c = 1;  int res = 1;    // iterate until generated   // fibonacci number is less   // than given fibonacci number  while (c < n)  {  c = a + b;    // res keeps track of   // number of generated  // fibonacci number  res++;  a = b;  b = c;  }    return res;  }    // Driver Code  public static void Main ()   {  int result = findIndex(21);  Console.WriteLine(result);  } } // This code is contributed // by anuj_67. 
JavaScript
<script> // A simple Javascript program to  // find index of given  // Fibonacci number. function findIndex(n) {    // If Fibonacci number   // is less than 2 its   // index will be same   // as number  if (n <= 1)  return n;    let a = 0 b = 1 c = 1;  let res = 1;    // Iterate until generated   // fibonacci number is less   // than given fibonacci number  while (c < n)  {  c = a + b;    // res keeps track of   // number of generated  // fibonacci number  res++;  a = b;  b = c;  }  return res; } // Driver code let result = findIndex(21); document.write(result); // This code is contributed by decode2207  </script> 
PHP
 // A simple PHP program to  // find index of given // Fibonacci number. function findIndex($n) { // if Fibonacci number // is less than 2 // its index will be  // same as number if ($n <= 1) return $n; $a = 0; $b = 1; $c = 1; $res = 1; // iterate until generated  // fibonacci number  // is less than given // fibonacci number while ($c < $n) { $c = $a + $b; // res keeps track of  // number of generated  // fibonacci number $res++; $a = $b; $b = $c; } return $res; } // Driver Code $result = findIndex(21); echo($result); // This code is contributed by Ajit. ?> 

Ieșire
8

Metoda 2 (pe bază de formulă)
Dar aici trebuia să generăm toate numerele Fibonacci până la un număr Fibonacci furnizat. Dar există o soluție rapidă la această problemă. Să vedem cum! Rețineți că calcularea jurnalului unui număr este o operație O(1) pe majoritatea platformelor.


Numărul Fibonacci este descris ca 
F n = 1 / sqrt(5) (pow(an) - pow(bn)) unde 
a = 1 / 2 ( 1 + sqrt(5) ) și b = 1 / 2 ( 1 - sqrt(5) )

Neglijând pow(b n) care este foarte mic din cauza valorii mari a lui n obținem 
n = rotund { 2,078087 * log(Fn) + 1,672276 }  
unde rundă înseamnă rotunjire la cel mai apropiat număr întreg.

Mai jos este implementarea ideii de mai sus. 

plutește în css
C++
// C++ program to find index of given Fibonacci // number #include   int findIndex(int n) {  float fibo = 2.078087 * log(n) + 1.672276;  // returning rounded off value of index  return round(fibo); } // Driver program to test above function int main() {  int n = 55;  printf('%dn' findIndex(n)); } 
Java
// A simple Java program to find index of given // Fibonacci number public class Fibonacci {  static int findIndex(int n)  {  float fibo = 2.078087F * (float) Math.log(n) + 1.672276F;  // returning rounded off value of index  return Math.round(fibo);  }  public static void main(String[] args)  {  int result = findIndex(55);  System.out.println(result);  } } 
Python3
# Python 3 program to find index of given Fibonacci # number import math def findIndex(n) : fibo = 2.078087 * math.log(n) + 1.672276 # returning rounded off value of index return round(fibo) # Driver program to test above function n = 21 print(findIndex(n)) # This code is contributed by Nikita Tiwari. 
C#
// A simple C# program to find  // index of given Fibonacci number using System; class Fibonacci { static int findIndex(int n) {  float fibo = 2.078087F * (float) Math.Log(n) +  1.672276F;  // returning rounded off value of index  return (int)(Math.Round(fibo)); }  // Driver code  public static void Main()  {  int result = findIndex(55);  Console.Write(result);  } } // This code is contributed by nitin mittal 
JavaScript
<script> // A simple Javascript program to find  // index of given Fibonacci number function findIndex(n) {  var fibo = 2.078087 * parseFloat(Math.log(n)) + 1.672276;    // Returning rounded off value of index  return Math.round(fibo); } // Driver code var result = findIndex(55); document.write(result); // This code is contributed by Ankita saini </script>  
PHP
 // PHP program to find index // of given Fibonacci Number function findIndex($n) { $fibo = 2.078087 * log($n) + 1.672276; // returning rounded off // value of index return round($fibo); } // Driver code $n = 55; echo(findIndex($n)); // This code is contributed by Ajit. ?> 

Ieșire
10

Complexitatea timpului : O(1)
Spațiu auxiliar : O(1)

Abordare:

putem rezolva această problemă folosind formula pentru al n-lea număr Fibonacci care este:

F(n) = (pow((1+sqrt(5))/2 n) - pow((1-sqrt(5))/2 n)) / sqrt(5)

Putem deriva indicele unui număr Fibonacci dat folosind această formulă. Putem repeta peste valorile lui n și putem calcula numărul Fibonacci corespunzător folosind formula de mai sus până când găsim un număr Fibonacci care este mai mare sau egal cu numărul dat. În acest moment putem returna indicele numărului Fibonacci care se potrivește cu numărul dat.

Mai jos este implementarea abordării de mai sus:

sfârșitul java
C++
#include    #include  using namespace std; int findIndex(int n) {  double phi = (1 + sqrt(5)) / 2;  int index = round(log(n * sqrt(5) + 0.5) / log(phi));  int fib = round((pow(phi index) - pow(1 - phi index)) / sqrt(5));  if (fib == n)  return index;  else  return -1; // n is not a Fibonacci number } int main() {  int n = 34;  int index = findIndex(n);  cout << 'The index of ' << n << ' is ' << index << endl;  return 0; } 
Java
//Java code for the above approach import java.util.*; public class FibonacciIndex {  public static int findIndex(int n) {  double phi = (1 + Math.sqrt(5)) / 2;  int index = (int) Math.round(Math.log(n * Math.sqrt(5) + 0.5) / Math.log(phi));  int fib = (int) Math.round((Math.pow(phi index) - Math.pow(1 - phi index)) / Math.sqrt(5));  if (fib == n)  return index;  else  return -1; // n is not a Fibonacci number  }  public static void main(String[] args) {  int n = 34;  int index = findIndex(n);  System.out.println('The index of ' + n + ' is ' + index);  } } 
Python3
import math def find_index(n): phi = (1 + math.sqrt(5)) / 2 index = round(math.log(n * math.sqrt(5) + 0.5) / math.log(phi)) fib = round((math.pow(phi index) - math.pow(1 - phi index)) / math.sqrt(5)) if fib == n: return index else: return -1 # n is not a Fibonacci number def main(): n = 34 index = find_index(n) print(f'The index of {n} is {index}') if __name__ == '__main__': main() 
C#
using System; class Program {  // Function to find the index of a number in the Fibonacci sequence  static int FindIndex(int n)  {  double phi = (1 + Math.Sqrt(5)) / 2; // Golden ratio    // Calculate the index using the formula for Fibonacci numbers  int index = (int)Math.Round(Math.Log(n * Math.Sqrt(5) + 0.5) / Math.Log(phi));    // Calculate the Fibonacci number at the found index  int fib = (int)Math.Round((Math.Pow(phi index) - Math.Pow(1 - phi index)) / Math.Sqrt(5));    // Check if the calculated Fibonacci number is equal to n  if (fib == n)  return index;  else  return -1; // n is not a Fibonacci number  }  static void Main()  {  int n = 34;  int index = FindIndex(n);  Console.WriteLine('The index of ' + n + ' is ' + index);  } } 
JavaScript
// Function to find the index of a number in the Fibonacci sequence function findIndex(n) {  const phi = (1 + Math.sqrt(5)) / 2;  const index = Math.round(Math.log(n * Math.sqrt(5) + 0.5) / Math.log(phi));  const fib = Math.round((Math.pow(phi index) - Math.pow(1 - phi index)) / Math.sqrt(5));  if (fib === n) {  return index;  } else {  return -1; // n is not a Fibonacci number  } } // Main function to test the findIndex function function main() {  const n = 34;  const index = findIndex(n);  console.log('The index of ' + n + ' is ' + index); } main(); 

Ieșire
The index of 34 is 9

Complexitatea timpului: O(1) deoarece implică doar câteva operații aritmetice.
Complexitatea spațiului: O(1), deoarece folosește doar o cantitate constantă de memorie pentru a stoca variabilele.

Acest articol este contribuit de Aditya Kumar .

 

Creați un test