logo

Verificați dacă un punct există sau nu în sectorul cercului.

Avem un cerc centrat la origine (0 0). Ca intrare ni se oferă unghiul de pornire al sectorului cercului și dimensiunea sectorului cercului în procente. 

Exemple: 

Input : Radius = 8 StartAngle = 0 Percentage = 12 x = 3 y = 4 Output : Point (3 4) exists in the circle sector Input : Radius = 12 Startangle = 45 Percentage = 25 x = 3 y = 4 Output : Point (3 4) does not exist in the circle sector


 



Sursa:Wikibook.org' title= Sursa:Wikibook.org


În această imagine, unghiul de pornire este 0 grade raza r și să presupunem că procentul din zona colorată este de 12%, apoi calculăm Unghiul final ca 360/procent + unghi de pornire .

„ce” înseamnă 10 din 100”

Pentru a afla dacă un punct (x y) există sau nu într-un sector de cerc (centrat la origine) găsim coordonatele polare ale acelui punct și apoi parcurgem următorii pași:

  1. Convertiți x y în coordonate polare folosind aceasta 
    Unghi = absenta(y/x); Raza = sqrt(x * y y y y y y);
  2. Atunci Angle trebuie să fie între StartingAngle și EndingAngle și Radius între 0 și Radius.
C++
// C++ program to check if a point lies inside a circle // sector. #include   using namespace std; void checkPoint(int radius int x int y float percent  float startAngle) {  // calculate endAngle  float endAngle = 360/percent + startAngle;  // Calculate polar co-ordinates  float polarradius = sqrt(x*x+y*y);  float Angle = atan(y/x);  // Check whether polarradius is less then radius of circle  // or not and Angle is between startAngle and endAngle  // or not  if (Angle>=startAngle && Angle<=endAngle && polarradius<radius)  printf('Point (%d %d) exist in the circle sectorn' x y);  else  printf('Point (%d %d) does not exist in the circle sectorn'  x y); } // Driver code int main() {  int radius = 8 x = 3 y = 4;  float percent = 12 startAngle = 0;  checkPoint(radius x y percent startAngle);  return 0; } 
Java
// Java program to check if // a point lies inside a circle // sector. class GFG { static void checkPoint(int radius int x int y float percent  float startAngle) {  // calculate endAngle  float endAngle = 360/percent + startAngle;    // Calculate polar co-ordinates  double polarradius = Math.sqrt(x*x+y*y);  double Angle = Math.atan(y/x);    // Check whether polarradius is  // less then radius of circle  // or not and Angle is between  // startAngle and endAngle  // or not  if (Angle>=startAngle && Angle<=endAngle && polarradius<radius)  System.out.print('Point'+'('+x+''+y+')'+  ' exist in the circle sectorn');  else  System.out.print('Point'+'('+x+''+y+')'+  ' exist in the circle sectorn'); } // Driver Program to test above function public static void main(String arg[]) {  int radius = 8 x = 3 y = 4;  float percent = 12 startAngle = 0;  checkPoint(radius x y percent startAngle); } } // This code is contributed // by Anant Agarwal. 
Python3
# Python3 program to check if a point  # lies inside a circle sector. import math def checkPoint(radius x y percent startAngle): # calculate endAngle endAngle = 360 / percent + startAngle # Calculate polar co-ordinates polarradius = math.sqrt(x * x + y * y) Angle = math.atan(y / x) # Check whether polarradius is less # then radius of circle or not and  # Angle is between startAngle and  # endAngle or not if (Angle >= startAngle and Angle <= endAngle and polarradius < radius): print('Point (' x '' y ') ' 'exist in the circle sector') else: print('Point (' x '' y ') ' 'does not exist in the circle sector') # Driver code radius x y = 8 3 4 percent startAngle = 12 0 checkPoint(radius x y percent startAngle) # This code is contributed by # Smitha Dinesh Semwal 
C#
// C# program to check if a point lies // inside a circle sector. using System.IO; using System; class GFG {    static void checkPoint(int radius int x int y  float percent float startAngle)  {    // calculate endAngle  float endAngle = 360 / percent + startAngle;    // Calculate polar co-ordinates  float polarradius =   (float)Math.Sqrt(x * x + y * y);    float Angle = (float)Math.Atan(y / x);    // Check whether polarradius is less then   // radius of circle or not and Angle is   // between startAngle and endAngle or not  if (Angle >= startAngle && Angle <= endAngle  && polarradius < radius)  Console.Write('Point ({0} {1}) exist in '  + 'the circle sector' x y);  else  Console.Write('Point ({0} {1}) does not '  + 'exist in the circle sector' x y);  }    // Driver code  public static void Main()  {  int radius = 8 x = 3 y = 4;  float percent = 12 startAngle = 0;  checkPoint(radius x y percent startAngle);  } } // This code is contributed by Smitha Dinesh Semwal 
JavaScript
<script> // Javascript program to check if // a point lies inside a circle // sector. function checkPoint(radius x y percent startAngle) {    // Calculate endAngle  let endAngle = 360 / percent + startAngle;    // Calculate polar co-ordinates  let polarradius = Math.sqrt(x * x + y * y);  let Angle = Math.atan(y / x);    // Check whether polarradius is  // less then radius of circle  // or not and Angle is between  // startAngle and endAngle  // or not  if (Angle >= startAngle &&   Angle <= endAngle &&   polarradius < radius)  document.write('Point' + '(' + x +   '' + y + ')' +  ' exist in the circle sectorn');  else  document.write('Point' + '(' + x +   '' + y + ')' +  ' exist in the circle sectorn'); }   // Driver code  let radius = 8 x = 3 y = 4; let percent = 12 startAngle = 0; checkPoint(radius x y percent startAngle); // This code is contributed by splevel62   </script> 

Ieșire: 

Point(3 4) exists in the circle sector

Complexitatea timpului:  O(1)
Spațiu auxiliar: O(1)


 

Creați un test