logo

Găsiți o permutare care provoacă cel mai rău caz de fuziune

Având în vedere că un set de elemente constată că permutarea acestor elemente ar duce la cel mai rău caz de fuziune.
Fuzionarea asimptotică este întotdeauna o (n log n) timp, dar cazurile care necesită mai multe comparații necesită, în general, mai mult timp în practică. Practic, trebuie să găsim o permutare a elementelor de intrare care să conducă la un număr maxim de comparații atunci când sunt sortate folosind un algoritm tipic de sortare.

Exemplu:  



natasha dalal
Consider the below set of elements   
{1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16}

Below permutation of the set causes 153
comparisons.
{1 9 5 13 3 11 7 15 2 10 6
14 4 12 8 16}

And an already sorted permutation causes
30 comparisons.

Acum, cum să obțineți cel mai rău caz de intrare pentru fuziunea pentru un set de intrare?

Ne permite să încercăm să construim tabloul în modul de jos în sus
Fie ca tabloul sortat să fie {12345678}.

Pentru a genera cel mai rău caz de fuziune, operațiunea de îmbinare care a dus la un tablou sortat de mai sus ar trebui să conducă la comparații maxime. Pentru a face acest lucru, sub-arraia din stânga și dreapta implicată în fuzionarea operației ar trebui să stocheze elemente alternative de tablou sortat. adică sub-ararul stâng ar trebui să fie {1357} și sub-array-ul din dreapta ar trebui să fie {2468}. Acum, fiecare element al tabloului va fi comparat încă o dată și asta va duce la comparații maxime. Aplicăm aceeași logică și pentru sub-array-ul stânga și dreapta. Pentru tabloul {1357} cel mai rău caz va fi atunci când sub-laraia din stânga și dreapta sunt {15} și, respectiv, {37} și pentru tabloul {2468} cel mai rău caz va apărea pentru {24} și {68}.



leagăn java

Algoritmul complet -
Generateworstcase (arr [])  

  1. Creați două tablouri auxiliare la stânga și la dreapta și stocați elemente de matrice alternative în ele.
  2. Apel Generateworstcase pentru Subarray stânga: GenerateWorstcase (stânga)
  3. Apel GenerateWorstcase pentru Subarray dreapta: GenerateWorstCase (dreapta)
  4. Copiați toate elementele subarrays din stânga și din dreapta înapoi la tabloul original.

Mai jos este implementarea ideii

motor de căutare și exemple
C++
// C++ program to generate Worst Case // of Merge Sort #include    using namespace std; // Function to print an array void printArray(int A[] int size) {  for(int i = 0; i < size; i++)  {  cout << A[i] << ' ';  }  cout << endl; } // Function to join left and right subarray int join(int arr[] int left[] int right[]  int l int m int r) {  int i;  for(i = 0; i <= m - l; i++)  arr[i] = left[i];  for(int j = 0; j < r - m; j++)  {  arr[i + j] = right[j];  } } // Function to store alternate elements in // left and right subarray int split(int arr[] int left[] int right[]  int l int m int r) {  for(int i = 0; i <= m - l; i++)  left[i] = arr[i * 2];  for(int i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case  // of Merge Sort int generateWorstCase(int arr[] int l  int r) {  if (l < r)  {  int m = l + (r - l) / 2;  // Create two auxiliary arrays  int left[m - l + 1];  int right[r - m];  // Store alternate array elements   // in left and right subarray  split(arr left right l m r);  // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);  // Join left and right subarray  join(arr left right l m r);  } } // Driver code int main() {    // Sorted array  int arr[] = { 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 };    int n = sizeof(arr) / sizeof(arr[0]);  cout << 'Sorted array is n';  printArray(arr n);  // Generate Worst Case of Merge Sort  generateWorstCase(arr 0 n - 1);  cout << 'nInput array that will result '  << 'in worst case of merge sort is n';    printArray(arr n);  return 0; } // This code is contributed by Mayank Tyagi 
C
// C program to generate Worst Case of Merge Sort  #include   #include   // Function to print an array  void printArray(int A[] int size)  {   for (int i = 0; i < size; i++)   printf('%d ' A[i]);   printf('n');  }  // Function to join left and right subarray  int join(int arr[] int left[] int right[]   int l int m int r)  {   int i; // Used in second loop   for (i = 0; i <= m - l; i++)   arr[i] = left[i];   for (int j = 0; j < r - m; j++)   arr[i + j] = right[j];  }  // Function to store alternate elements in left  // and right subarray  int split(int arr[] int left[] int right[]   int l int m int r)  {   for (int i = 0; i <= m - l; i++)   left[i] = arr[i * 2];   for (int i = 0; i < r - m; i++)   right[i] = arr[i * 2 + 1];  }  // Function to generate Worst Case of Merge Sort  int generateWorstCase(int arr[] int l int r)  {   if (l < r)   {   int m = l + (r - l) / 2;   // create two auxiliary arrays   int left[m - l + 1];   int right[r - m];   // Store alternate array elements in left   // and right subarray   split(arr left right l m r);   // Recurse first and second halves   generateWorstCase(left l m);   generateWorstCase(right m + 1 r);   // join left and right subarray   join(arr left right l m r);   }  }  // Driver code  int main()  {   // Sorted array   int arr[] = { 1 2 3 4 5 6 7 8 9   10 11 12 13 14 15 16 };   int n = sizeof(arr) / sizeof(arr[0]);   printf('Sorted array is n');   printArray(arr n);   // generate Worst Case of Merge Sort   generateWorstCase(arr 0 n - 1);   printf('nInput array that will result in '  'worst case of merge sort is n');   printArray(arr n);   return 0;  }  
Java
// Java program to generate Worst Case of Merge Sort import java.util.Arrays; class GFG  {  // Function to join left and right subarray  static void join(int arr[] int left[] int right[]  int l int m int r)  {  int i;  for (i = 0; i <= m - l; i++)  arr[i] = left[i];    for (int j = 0; j < r - m; j++)  arr[i + j] = right[j];  }    // Function to store alternate elements in left  // and right subarray  static void split(int arr[] int left[] int right[]  int l int m int r)  {  for (int i = 0; i <= m - l; i++)  left[i] = arr[i * 2];    for (int i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1];  }    // Function to generate Worst Case of Merge Sort  static void generateWorstCase(int arr[] int l int r)  {  if (l < r)  {  int m = l + (r - l) / 2;    // create two auxiliary arrays  int[] left = new int[m - l + 1];  int[] right = new int[r - m];    // Store alternate array elements in left  // and right subarray  split(arr left right l m r);    // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);    // join left and right subarray  join(arr left right l m r);  }  }    // driver program  public static void main (String[] args)   {  // sorted array  int arr[] = { 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 };  int n = arr.length;  System.out.println('Sorted array is');  System.out.println(Arrays.toString(arr));    // generate Worst Case of Merge Sort  generateWorstCase(arr 0 n - 1);    System.out.println('nInput array that will result in n'+  'worst case of merge sort is n');    System.out.println(Arrays.toString(arr));  } } // Contributed by Pramod Kumar 
Python
# Python program to generate Worst Case of Merge Sort # Function to join left and right subarray def join(arr left right l m r): i = 0; for i in range(m-l+1): arr[i] = left[i]; i+=1; for j in range(r-m): arr[i + j] = right[j]; # Function to store alternate elements in left # and right subarray def split(arr left right l m r): for i in range(m-l+1): left[i] = arr[i * 2]; for i in range(r-m): right[i] = arr[i * 2 + 1]; # Function to generate Worst Case of Merge Sort def generateWorstCase(arr l r): if (l < r): m = l + (r - l) // 2; # create two auxiliary arrays left = [0 for i in range(m - l + 1)]; right = [0 for i in range(r-m)]; # Store alternate array elements in left # and right subarray split(arr left right l m r); # Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); # join left and right subarray join(arr left right l m r); # driver program if __name__ == '__main__': # sorted array arr = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]; n = len(arr); print('Sorted array is'); print(arr); # generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); print('nInput array that will result in n' + 'worst case of merge sort is '); print(arr); # This code contributed by shikhasingrajput  
C#
// C# program to generate Worst Case of // Merge Sort using System; class GFG {    // Function to join left and right subarray  static void join(int []arr int []left   int []right int l int m int r)  {  int i;  for (i = 0; i <= m - l; i++)  arr[i] = left[i];  for (int j = 0; j < r - m; j++)  arr[i + j] = right[j];  }  // Function to store alternate elements in  // left and right subarray  static void split(int []arr int []left  int []right int l int m int r)  {  for (int i = 0; i <= m - l; i++)  left[i] = arr[i * 2];  for (int i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1];  }    // Function to generate Worst Case of   // Merge Sort  static void generateWorstCase(int []arr   int l int r)  {  if (l < r)  {  int m = l + (r - l) / 2;  // create two auxiliary arrays  int[] left = new int[m - l + 1];  int[] right = new int[r - m];  // Store alternate array elements  // in left and right subarray  split(arr left right l m r);  // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);  // join left and right subarray  join(arr left right l m r);  }  }    // driver program  public static void Main ()   {    // sorted array  int []arr = { 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 };    int n = arr.Length;  Console.Write('Sorted array isn');    for(int i = 0; i < n; i++)  Console.Write(arr[i] + ' ');    // generate Worst Case of Merge Sort  generateWorstCase(arr 0 n - 1);  Console.Write('nInput array that will '  + 'result in n worst case of'  + ' merge sort is n');    for(int i = 0; i < n; i++)  Console.Write(arr[i] + ' ');  } } // This code is contributed by Smitha  
JavaScript
<script>  // javascript program to generate Worst Case  // of Merge Sort  // Function to print an array  function printArray(Asize)  {  for(let i = 0; i < size; i++)  {  document.write(A[i] + ' ');  }  }  // Function to join left and right subarray  function join(arrleftrightlmr)  {  let i;  for(i = 0; i <= m - l; i++)  arr[i] = left[i];  for(let j = 0; j < r - m; j++)  {  arr[i + j] = right[j];  }  }  // Function to store alternate elements in  // left and right subarray  function split(arrleftrightlmr)  {  for(let i = 0; i <= m - l; i++)  left[i] = arr[i * 2];  for(let i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1];  }  // Function to generate Worst Case  // of Merge Sort  function generateWorstCase(arrlr)  {  if (l < r)  {  let m = l + parseInt((r - l) / 2 10);  // Create two auxiliary arrays  let left = new Array(m - l + 1);  let right = new Array(r - m);  left.fill(0);  right.fill(0);  // Store alternate array elements  // in left and right subarray  split(arr left right l m r);  // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);  // Join left and right subarray  join(arr left right l m r);  }  }    let arr = [1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 ];   let n = arr.length;  document.write('Sorted array is' + '
'
); printArray(arr n); // Generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); document.write('
'
+ 'Input array that will result ' + 'in worst case of merge sort is' + '
'
); printArray(arr n); // This code is contributed by vaibhavrabadiya117. </script>

Ieșire: 



Sorted array is   
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input array that will result in worst
case of merge sort is
1 9 5 13 3 11 7 15 2 10 6 14 4 12 8 16

Complexitate a timpului: o (n logn)
Spațiu auxiliar: O (n)
Referințe - Stack overflow