logo

Chiar și Suma numerelor Fibonacci

Încercați-l pe GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Având în vedere o limită, găsiți suma tuturor termenilor cu valori pare din șirul Fibonacci sub limita dată.
Primii termeni ai Numerele Fibonacci sunt 1 1 2 3 5 8 13 21 34 55 89 144 233 ... (Sunt evidențiate numerele pare).
Exemple:  
 

Input : limit = 8 Output : 10 Explanation : 2 + 8 = 10 Input : limit = 400; Output : 188. Explanation : 2 + 8 + 34 + 144 = 188.


 

Practică recomandată Chiar și Suma numerelor Fibonacci Încearcă!


O soluție simplă este să iterați prin toate numerele Fibonacci, în timp ce următorul număr este mai mic sau egal cu limita dată. Pentru fiecare număr verificați dacă este par. Dacă numărul este chiar, adăugați-l la rezultat.
O soluție eficientă se bazează pe cele de mai jos formula recursivă pentru numerele Fibonacci chiar
 



Recurrence for Even Fibonacci sequence is: EFn = 4EFn-1 + EFn-2 with seed values EF0 = 0 and EF1 = 2.   EFn   represents n'th term in Even Fibonacci sequence.


Consultați acest mai multe detalii despre formula de mai sus.
Deci, în timp ce repetăm ​​numerele Fibonacci, generăm doar numere Fibonacci par. 
 

C++
// Find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit. #include   using namespace std; // Returns sum of even Fibonacci numbers which are // less than or equal to given limit. int evenFibSum(int limit) {  if (limit < 2)  return 0;  // Initialize first two even Fibonacci numbers  // and their sum  long long int ef1 = 0 ef2 = 2;  long long int sum = ef1 + ef2;  // calculating sum of even Fibonacci value  while (ef2 <= limit)  {  // get next even value of Fibonacci sequence  long long int ef3 = 4*ef2 + ef1;  // If we go beyond limit we break loop  if (ef3 > limit)  break;  // Move to next even number and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }  return sum; } // Driver code int main() {  int limit = 400;  cout << evenFibSum(limit);  return 0; } 
Java
// Find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit. import java.io.*; class GFG  {  // Returns sum of even Fibonacci numbers which are  // less than or equal to given limit.  static int evenFibSum(int limit)  {  if (limit < 2)  return 0;    // Initialize first two even Fibonacci numbers  // and their sum  long ef1 = 0 ef2 = 2;  long sum = ef1 + ef2;    // calculating sum of even Fibonacci value  while (ef2 <= limit)  {  // get next even value of Fibonacci sequence  long ef3 = 4 * ef2 + ef1;    // If we go beyond limit we break loop  if (ef3 > limit)  break;    // Move to next even number and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }    return(int) sum;  }    // Driver code  public static void main (String[] args)   {  int limit = 400;  System.out.println(evenFibSum(limit));    } } // This code is contributed by vt_m. 
Python3
# Find the sum of all the even-valued  # terms in the Fibonacci sequence which  # do not exceed given limit. # Returns sum of even Fibonacci numbers which # are less than or equal to given limit. def evenFibSum(limit) : if (limit < 2) : return 0 # Initialize first two even Fibonacci numbers # and their sum ef1 = 0 ef2 = 2 sm= ef1 + ef2 # calculating sum of even Fibonacci value while (ef2 <= limit) : # get next even value of Fibonacci  # sequence ef3 = 4 * ef2 + ef1 # If we go beyond limit we break loop if (ef3 > limit) : break # Move to next even number and update # sum ef1 = ef2 ef2 = ef3 sm = sm + ef2 return sm # Driver code limit = 400 print(evenFibSum(limit)) # This code is contributed by Nikita Tiwari. 
C#
// C# program to Find the sum of all // the even-valued terms in the  // Fibonacci sequence which do not // exceed given limit.given limit. using System; class GFG {    // Returns sum of even Fibonacci   // numbers which are less than or  // equal to given limit.  static int evenFibSum(int limit)  {  if (limit < 2)  return 0;    // Initialize first two even  // Fibonacci numbers and their sum  long ef1 = 0 ef2 = 2;  long sum = ef1 + ef2;    // calculating sum of even   // Fibonacci value  while (ef2 <= limit)  {    // get next even value of   // Fibonacci sequence  long ef3 = 4 * ef2 + ef1;    // If we go beyond limit  // we break loop  if (ef3 > limit)  break;    // Move to next even number  // and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }    return(int) sum;  }    // Driver code  public static void Main ()   {  int limit = 400;  Console.Write(evenFibSum(limit));    } } // This code is contributed by Nitin Mittal. 
PHP
 // Find the sum of all the  // even-valued terms in the  // Fibonacci sequence which  // do not exceed given limit. // Returns sum of even Fibonacci // numbers which are less than or  // equal to given limit. function evenFibSum($limit) { if ($limit < 2) return 0; // Initialize first two even  // Fibonacci numbers and their sum $ef1 = 0; $ef2 = 2; $sum = $ef1 + $ef2; // calculating sum of // even Fibonacci value while ($ef2 <= $limit) { // get next even value of // Fibonacci sequence $ef3 = 4 * $ef2 + $ef1; // If we go beyond limit // we break loop if ($ef3 > $limit) break; // Move to next even number // and update sum $ef1 = $ef2; $ef2 = $ef3; $sum += $ef2; } return $sum; } // Driver code $limit = 400; echo(evenFibSum($limit)); // This code is contributed by Ajit. ?> 
JavaScript
<script> // Javascript program to find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit.  // Returns sum of even Fibonacci numbers which are  // less than or equal to given limit.  function evenFibSum(limit)  {  if (limit < 2)  return 0;    // Initialize first two even Fibonacci numbers  // and their sum  let ef1 = 0 ef2 = 2;  let sum = ef1 + ef2;    // calculating sum of even Fibonacci value  while (ef2 <= limit)  {  // get next even value of Fibonacci sequence  let ef3 = 4 * ef2 + ef1;    // If we go beyond limit we break loop  if (ef3 > limit)  break;    // Move to next even number and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }    return sum;  }   // Function call    let limit = 400;  document.write(evenFibSum(limit));   </script> 

Ieșire:  
 

188

Complexitatea timpului: Pe)

Spațiu auxiliar: O(1)

module cu arc