logo

Număr deficitar

Încercați-l pe GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Un număr n se spune a fi Număr Deficient dacă suma tuturor divizorilor numărului notat cu divizoriSuma(n) este mai mică de două ori valoarea numărului n. Iar diferența dintre aceste două valori se numește deficit .
Matematic, dacă condiția de mai jos este valabilă, se spune că numărul este deficitar: 
 

  divisorsSum(n) < 2 * n     deficiency   = (2 * n) - divisorsSum(n)


Primele numere deficitare sunt:
1 2 3 4 5 7 8 9 10 11 13 14 15 16 17 19 .....
Având în vedere un număr n, sarcina noastră este să aflăm dacă acest număr este un număr deficitar sau nu. 
Exemple:  
 

Input: 21 Output: YES Divisors are 1 3 7 and 21. Sum of divisors is 32. This sum is less than 2*21 or 42. Input: 12 Output: NO Input: 17 Output: YES


 



Practică recomandată Număr deficitar Încearcă!


O Soluție simplă este de a repeta toate numerele de la 1 la n și de a verifica dacă numărul împarte n și de a calcula suma. Verificați dacă această sumă este mai mică de 2 * n sau nu.
Timp Complexitatea acestei abordări: O ( n )
Soluție optimizată:  
Dacă observăm cu atenție divizorii numărului n sunt prezenți în perechi. De exemplu, dacă n = 100, atunci toate perechile de divizori sunt: ​​(1 100) (2 50) (4 25) (5 20) (10 10)
Folosind acest fapt, ne putem accelera programul. 
În timp ce verificăm divizorii va trebui să fim atenți dacă există doi divizori egali ca în cazul lui (10 10). În acest caz, vom lua doar unul dintre ele în calculul sumei.
Implementarea abordării optimizate 
 

C++
// C++ program to implement an Optimized Solution // to check Deficient Number #include    using namespace std; // Function to calculate sum of divisors int divisorsSum(int n) {  int sum = 0; // Initialize sum of prime factors  // Note that this loop runs till square root of n  for (int i = 1; i <= sqrt(n); i++) {  if (n % i == 0) {  // If divisors are equal take only one  // of them  if (n / i == i) {  sum = sum + i;  }  else // Otherwise take both  {  sum = sum + i;  sum = sum + (n / i);  }  }  }  return sum; } // Function to check Deficient Number bool isDeficient(int n) {  // Check if sum(n) < 2 * n  return (divisorsSum(n) < (2 * n)); } /* Driver program to test above function */ int main() {  isDeficient(12) ? cout << 'YESn' : cout << 'NOn';  isDeficient(15) ? cout << 'YESn' : cout << 'NOn';  return 0; } 
Java
// Java program to check Deficient Number import java.io.*; class GFG {  // Function to calculate sum of divisors  static int divisorsSum(int n)  {  int sum = 0; // Initialize sum of prime factors  // Note that this loop runs till square root of n  for (int i = 1; i <= (Math.sqrt(n)); i++) {  if (n % i == 0) {  // If divisors are equal take only one  // of them  if (n / i == i) {  sum = sum + i;  }  else // Otherwise take both  {  sum = sum + i;  sum = sum + (n / i);  }  }  }  return sum;  }  // Function to check Deficient Number  static boolean isDeficient(int n)  {  // Check if sum(n) < 2 * n  return (divisorsSum(n) < (2 * n));  }  /* Driver program to test above function */  public static void main(String args[])  {  if (isDeficient(12))  System.out.println('YES');  else  System.out.println('NO');  if (isDeficient(15))  System.out.println('YES');  else  System.out.println('NO');  } } // This code is contributed by Nikita Tiwari 
Python3
# Python program to implement an Optimized  # Solution to check Deficient Number import math # Function to calculate sum of divisors def divisorsSum(n) : sum = 0 # Initialize sum of prime factors # Note that this loop runs till square # root of n i = 1 while i<= math.sqrt(n) : if (n % i == 0) : # If divisors are equal take only one # of them if (n // i == i) : sum = sum + i else : # Otherwise take both sum = sum + i; sum = sum + (n // i) i = i + 1 return sum # Function to check Deficient Number def isDeficient(n) : # Check if sum(n) < 2 * n return (divisorsSum(n) < (2 * n)) # Driver program to test above function  if ( isDeficient(12) ): print ('YES') else : print ('NO') if ( isDeficient(15) ) : print ('YES') else : print ('NO') # This Code is contributed by Nikita Tiwari 
C#
// C# program to implement an Optimized Solution // to check Deficient Number using System; class GFG {  // Function to calculate sum of  // divisors  static int divisorsSum(int n)  {  // Initialize sum of prime factors  int sum = 0;  // Note that this loop runs till  // square root of n  for (int i = 1; i <= (Math.Sqrt(n)); i++) {  if (n % i == 0) {  // If divisors are equal  // take only one of them  if (n / i == i) {  sum = sum + i;  }  else // Otherwise take both  {  sum = sum + i;  sum = sum + (n / i);  }  }  }  return sum;  }  // Function to check Deficient Number  static bool isDeficient(int n)  {  // Check if sum(n) < 2 * n  return (divisorsSum(n) < (2 * n));  }  /* Driver program to test above function */  public static void Main()  {  string var = isDeficient(12) ? 'YES' : 'NO';  Console.WriteLine(var);  string var1 = isDeficient(15) ? 'YES' : 'NO';  Console.WriteLine(var1);  } } // This code is contributed by vt_m 
PHP
 // PHP program to implement  // an Optimized Solution // to check Deficient Number // Function to calculate // sum of divisors function divisorsSum($n) { // Initialize sum of // prime factors $sum = 0; // Note that this loop runs  // till square root of n for ($i = 1; $i <= sqrt($n); $i++) { if ($n % $i==0) { // If divisors are equal  // take only one of them if ($n / $i == $i) { $sum = $sum + $i; } // Otherwise take both else { $sum = $sum + $i; $sum = $sum + ($n / $i); } } } return $sum; } // Function to check // Deficient Number function isDeficient($n) { // Check if sum(n) < 2 * n return (divisorsSum($n) < (2 * $n)); } // Driver Code $ds = isDeficient(12) ? 'YESn' : 'NOn'; echo($ds); $ds = isDeficient(15) ? 'YESn' : 'NOn'; echo($ds); // This code is contributed by ajit;. ?> 
JavaScript
<script> // Javascript program to check Deficient Number  // Function to calculate sum of divisors  function divisorsSum(n)  {  let sum = 0; // Initialize sum of prime factors    // Note that this loop runs till square root of n  for (let i = 1; i <= (Math.sqrt(n)); i++)  {  if (n % i == 0)   {    // If divisors are equal take only one  // of them  if (n / i == i) {  sum = sum + i;  }  else // Otherwise take both  {  sum = sum + i;  sum = sum + (n / i);  }  }  }    return sum;  }    // Function to check Deficient Number  function isDeficient(n)  {    // Check if sum(n) < 2 * n  return (divisorsSum(n) < (2 * n));  } // Driver code to test above methods  if (isDeficient(12))  document.write('YES' + '  
'
); else document.write('NO' + '
'
); if (isDeficient(15)) document.write('YES' + '
'
); else document.write('NO' + '
'
); // This code is contributed by avijitmondal1998. </script>

Ieșire:  
 

NO YES


Complexitatea timpului: O( sqrt( n )) 
Spatiu auxiliar: O(1)
Referinte: 
https://en.wikipedia.org/wiki/Deficient_number