Având în vedere o serie de n elemente și un număr întreg k . Sarcina este să găsești numărul de subbaraj care are un element maxim mai mare decât K.
Exemple:
Input : arr[] = {1 2 3} and k = 2.Recommended Practice Contele de Subarrays Încearcă!
Output : 3
All the possible subarrays of arr[] are
{ 1 } { 2 } { 3 } { 1 2 } { 2 3 }
{ 1 2 3 }.
Their maximum elements are 1 2 3 2 3 3.
There are only 3 maximum elements > 2.
Abordarea 1: Numărarea subbaryurilor cu element max<= K and then subtracting from total subarrays.
Ideea este de a aborda problema numărând subtaiere al căror element maxim este mai mic sau egal cu k, deoarece numărarea unor astfel de subregii este mai ușoară. Pentru a găsi numărul de subbary al căror element maxim este mai mic sau egal cu k eliminați tot elementul care este mai mare decât K și găsiți numărul de subbary cu elementele din stânga.
Odată ce găsim numărul de mai sus, îl putem scădea din n*(n+1)/2 pentru a obține rezultatul dorit. Observați că poate exista n*(n+1)/2 număr posibil de sub-matrice de orice matrice de dimensiune n. Deci, găsirea numărului de subbary al căror element maxim este mai mic sau egal cu K și scăderea lui din n*(n+1)/2 ne obține răspunsul.
Mai jos este implementarea acestei abordări:
C++// C++ program to count number of subarrays // whose maximum element is greater than K. #include using namespace std; // Return number of subarrays whose maximum // element is less than or equal to K. int countSubarray(int arr[] int n int k) { // To store count of subarrays with all // elements less than or equal to k. int s = 0; // Traversing the array. int i = 0; while (i < n) { // If element is greater than k ignore. if (arr[i] > k) { i++; continue; } // Counting the subarray length whose // each element is less than equal to k. int count = 0; while (i < n && arr[i] <= k) { i++; count++; } // Summing number of subarray whose // maximum element is less than equal to k. s += ((count * (count + 1)) / 2); } return (n * (n + 1) / 2 - s); } // Driven Program int main() { int arr[] = { 1 2 3 }; int k = 2; int n = sizeof(arr) / sizeof(arr[0]); cout << countSubarray(arr n k); return 0; }
Java // Java program to count number of subarrays // whose maximum element is greater than K. import java.util.*; class GFG { // Return number of subarrays whose maximum // element is less than or equal to K. static int countSubarray(int arr[] int n int k) { // To store count of subarrays with all // elements less than or equal to k. int s = 0; // Traversing the array. int i = 0; while (i < n) { // If element is greater than k ignore. if (arr[i] > k) { i++; continue; } // Counting the subarray length whose // each element is less than equal to k. int count = 0; while (i < n && arr[i] <= k) { i++; count++; } // Summing number of subarray whose // maximum element is less than equal to k. s += ((count * (count + 1)) / 2); } return (n * (n + 1) / 2 - s); } // Driver code public static void main(String[] args) { int arr[] = { 1 2 3 }; int k = 2; int n = arr.length; System.out.print(countSubarray(arr n k)); } } // This code is contributed by Anant Agarwal.
Python3 # Python program to count # number of subarrays # whose maximum element # is greater than K. # Return number of # subarrays whose maximum # element is less than or equal to K. def countSubarray(arr n k): # To store count of # subarrays with all # elements less than # or equal to k. s = 0 # Traversing the array. i = 0 while (i < n): # If element is greater # than k ignore. if (arr[i] > k): i = i + 1 continue # Counting the subarray # length whose # each element is less # than equal to k. count = 0 while (i < n and arr[i] <= k): i = i + 1 count = count + 1 # Summing number of subarray whose # maximum element is less # than equal to k. s = s + ((count*(count + 1))//2) return (n*(n + 1)//2 - s) # Driver code arr = [1 2 3] k = 2 n = len(arr) print(countSubarray(arr n k)) # This code is contributed # by Anant Agarwal.
C# // C# program to count number of subarrays // whose maximum element is greater than K. using System; class GFG { // Return number of subarrays whose maximum // element is less than or equal to K. static int countSubarray(int[] arr int n int k) { // To store count of subarrays with all // elements less than or equal to k. int s = 0; // Traversing the array. int i = 0; while (i < n) { // If element is greater than k ignore. if (arr[i] > k) { i++; continue; } // Counting the subarray length whose // each element is less than equal to k. int count = 0; while (i < n && arr[i] <= k) { i++; count++; } // Summing number of subarray whose // maximum element is less than equal to k. s += ((count * (count + 1)) / 2); } return (n * (n + 1) / 2 - s); } // Driver code public static void Main() { int[] arr = {1 2 3}; int k = 2; int n = arr.Length; Console.WriteLine(countSubarray(arr n k)); } } // This code is contributed by vt_m.
JavaScript <script> // Javascript program to count number of subarrays // whose maximum element is greater than K. // Return number of subarrays whose maximum // element is less than or equal to K. function countSubarray(arr n k) { // To store count of subarrays with all // elements less than or equal to k. let s = 0; // Traversing the array. let i = 0; while (i < n) { // If element is greater than k ignore. if (arr[i] > k) { i++; continue; } // Counting the subarray length whose // each element is less than equal to k. let count = 0; while (i < n && arr[i] <= k) { i++; count++; } // Summing number of subarray whose // maximum element is less than equal to k. s += parseInt((count * (count + 1)) / 2 10); } return (n * parseInt((n + 1) / 2 10) - s); } let arr = [1 2 3]; let k = 2; let n = arr.length; document.write(countSubarray(arr n k)); </script>
PHP // PHP program to count number of subarrays // whose maximum element is greater than K. // Return number of subarrays whose maximum // element is less than or equal to K. function countSubarray( $arr $n $k) { // To store count of subarrays with all // elements less than or equal to k. $s = 0; // Traversing the array. $i = 0; while ($i < $n) { // If element is greater than k // ignore. if ($arr[$i] > $k) { $i++; continue; } // Counting the subarray length // whose each element is less // than equal to k. $count = 0; while ($i < $n and $arr[$i] <= $k) { $i++; $count++; } // Summing number of subarray whose // maximum element is less than // equal to k. $s += (($count * ($count + 1)) / 2); } return ($n * ($n + 1) / 2 - $s); } // Driven Program $arr = array( 1 2 3 ); $k = 2; $n = count($arr); echo countSubarray($arr $n $k); // This code is contributed by anuj_67. ?> Ieșire
3
Complexitatea timpului: O(n).
Spațiu auxiliar: O(1)
Abordarea 2: Numărarea subbaryelor având elementul maxim > K
În această abordare găsim pur și simplu numărul de sub-tare care poate fi format prin includerea unui element la indicele i care este mai mare decât K. Prin urmare, dacă presupunem arr [ i ] > K atunci toate sub-tabele în care este prezent acest element vor avea o valoare care este mai mare decât k, așa că doar calculăm toate acestea pentru fiecare element care este mai mare decât K și le adăugăm ca răspuns. Inițializam mai întâi două variabile ani = 0 acesta conține răspuns și prev = -1 aceasta ține evidența indicelui elementului anterior care a fost mai mare decât K.
Pentru a face acest lucru avem nevoie doar de trei valori pentru fiecare arr [ i ] > K .
- Numărul de subtare începând de la index i . Acesta va fi ( N - i ) . NOTĂ: În aceasta am inclus subbarra care conține un singur element care este acest element în sine. { arr [ i ] }
- Numărul de subbariere care se termină la acest index i dar indicele de pornire al acestor subbariere este după indice prev a elementului anterior care a fost mai mare decât K de ce facem asta? Pentru că pentru aceste elemente trebuie să fi calculat deja răspunsul nostru, astfel încât să nu dorim să numărăm aceleași subvarii de mai multe ori. Deci această valoare va fi ( i - precedent - 1) . NOTĂ: În aceasta scădem 1 deoarece am numărat deja un subbary { arr [ i ] } având ca element unic. Vezi nota de mai sus.
- Numărul de subbariere cu indice de pornire mai mic decât i dar mai mare decât prev și index final mai mare decât i . Prin urmare, toate subbarajele în care arr[i] este între. Acest lucru îl putem calcula înmulțind peste două valori. Să le spunem ca L = ( N - i - 1 ) şi R = ( i - anterioară -1 ). Acum doar înmulțim aceste L și R pentru că pentru fiecare indice din partea stângă a lui i există indice R care poate face diferite subbaryuri de matematică de bază. Deci asta devine L*R. Observați aici, în val de L, am scăzut de fapt 1 dacă nu facem acest lucru, atunci includem indicele i în L*R, ceea ce va însemna că am inclus din nou subbaryurile de tip numărul 1. Vezi punctul 1.
Mai jos este implementarea acestei abordări:
C++// C++ program to count number of subarrays // whose maximum element is greater than K. #include using namespace std; long long countSubarray(int arr[] int n int k) { long long ans = 0 ; int prev = - 1; //prev for keeping track of index of previous element > k; for(int i = 0 ; i < n ; i++ ) { if ( arr [ i ] > k ) { ans += n - i ; //subarrays starting at index i. ans += i - prev - 1 ; //subarrays ending at index i but starting after prev. ans += ( n - i - 1 ) * 1LL * ( i - prev - 1 ) ; //subarrays having index i element in between. prev = i; // updating prev } } return ans; } // Driven Program int main() { int arr[] = { 4 5 1 2 3 }; int k = 2; int n = sizeof(arr) / sizeof(arr[0]); cout << countSubarray(arr n k); return 0; } // This Code is contributed by Manjeet Singh.
Java // Java program to count number of subarrays // whose maximum element is greater than K. import java.util.*; public class GFG { static long countSubarray(int arr[] int n int k) { long ans = 0 ; int prev = - 1; //prev for keeping track of index of previous element > k; for(int i = 0 ; i < n ; i++ ) { if ( arr [ i ] > k ) { ans += n - i ; //subarrays starting at index i. ans += i - prev - 1 ; //subarrays ending at index i but starting after prev. ans += ( n - i - 1 ) * 1L * ( i - prev - 1 ) ; //subarrays having index i element in between. prev = i; // updating prev } } return ans; } // Driver code public static void main(String[] args) { int arr[] = { 4 5 1 2 3 }; int k = 2; int n = arr.length; System.out.print(countSubarray(arr n k)); } } //This Code is contributed by Manjeet Singh
Python3 # Python program to count number of subarrays # whose maximum element is greater than K. def countSubarray( arr n k): ans = 0 ; prev = - 1; #prev for keeping track of index of previous element > k; for i in range(0n): if ( arr [ i ] > k ) : ans += n - i ; #subarrays starting at index i. ans += i - prev - 1 ; #subarrays ending at index i but starting after prev. ans += ( n - i - 1 ) * ( i - prev - 1 ) ; #subarrays having index i element in between. prev = i; # updating prev return ans; # Driven Program arr = [ 4 5 1 2 3 ]; k = 2; n = len(arr); print(countSubarray(arr n k)); # this code is contributed by poojaagarwal2.
C# // C# program to count number of subarrays // whose maximum element is greater than K. using System; public class GFG { static long countSubarray(int[] arr int n int k) { long ans = 0; int prev = -1; // prev for keeping track of index of // previous element > k; for (int i = 0; i < n; i++) { if (arr[i] > k) { ans += n - i; // subarrays starting at index // i. ans += i - prev - 1; // subarrays ending at index i // but starting after prev. ans += (n - i - 1) * (long)1 * (i - prev - 1); // subarrays having index i // element in between. prev = i; // updating prev } } return ans; } // Driver code public static void Main(string[] args) { int[] arr = { 4 5 1 2 3 }; int k = 2; int n = arr.Length; Console.Write(countSubarray(arr n k)); } } // This Code is contributed by Karandeep1234
JavaScript // Javascript program to count number of subarrays // whose maximum element is greater than K. function countSubarray(arr n k) { let ans = 0 ; //prev for keeping track of index of previous element > k; let prev = - 1; for(let i = 0 ; i < n ; i++ ) { if ( arr [ i ] > k ) { //subarrays starting at index i. ans += n - i ; //subarrays ending at index i but starting after prev. ans += i - prev - 1 ; //subarrays having index i element in between. ans += ( n - i - 1 ) * 1 * ( i - prev - 1 ) ; // updating prev prev = i; } } return ans; } // Driven Program let arr = [ 4 5 1 2 3 ]; let k = 2; let n = arr.length; document.write(countSubarray(arr n k));
Ieșire
12
Complexitatea timpului: O(n).
Abordarea 3: Tehnica ferestrei culisante.
Algoritm:
1. Inițializați o variabilă ani = 0 o variabilă maxElement = 0 și o variabilă număr = 0 .
2. Iterați prin matrice făcând următoarele pentru fiecare element:
o. Dacă elementul curent adică arr[i] este mai mare decât valoarea maximă actuală actualizarea maximă, adică Radioul = arr ] și resetați numărul la 0.
b. Dacă elementul curent este mai mic decât sau egal cu maximul curent, atunci creșteți numărul.
c. Dacă maxElement este grteater decat k atunci adaugă numărătoarea de subbarys la răspunsul final și actualizarea maxElement la elementul curent.
3. Întoarceți răspunsul final.
Iată implementarea tehnicii ferestrei glisante.
C++#include using namespace std; int countSubarray(int arr[] int n int k) { int maxElement = 0 count = 0 ans = 0; for(int i=0; i<n; i++) { if(arr[i] > maxElement) { maxElement = arr[i]; count = 0; } else { count++; } if(maxElement > k) { ans += (i - count + 1); maxElement = arr[i]; count = 0; } } return ans; } int main() { int arr[] = {1 2 3 4}; int k = 1; int n = sizeof(arr) / sizeof(arr[0]); cout << countSubarray(arr n k); return 0; } // This code is contributed by Vaibhav Saroj
C #include int countSubarray(int arr[] int n int k) { int maxElement = 0 count = 0 ans = 0; for(int i=0; i<n; i++) { if(arr[i] > maxElement) { maxElement = arr[i]; count = 0; } else { count++; } if(maxElement > k) { ans += (i - count + 1); maxElement = arr[i]; count = 0; } } ans += (count * (count + 1)) / 2; return ans; } int main() { int arr[] = {1 2 3 4}; int k = 1; int n = sizeof(arr) / sizeof(arr[0]); printf('%dn' countSubarray(arr n k)); return 0; } // This code is contributed by Vaibhav Saroj
Java import java.util.*; public class GFG { // Function to count the number of subarrays with the maximum element greater than k public static int countSubarray(int[] arr int n int k) { int maxElement = 0; // Variable to store the maximum element encountered so far int count = 0; // Variable to count the length of the subarray with elements <= k int ans = 0; // Variable to store the final result for (int i = 0; i < n; i++) { if (arr[i] > maxElement) { // If the current element is greater than the maximum element // update the maximum element and reset the count to zero. maxElement = arr[i]; count = 0; } else { // increment the count count++; } if (maxElement > k) { // If the maximum element in the current subarray is greater than k // add the count of subarrays ending at the current index (i - count + 1) to the result. ans += (i - count + 1); // Reset the maximum element and count to zero. maxElement = arr[i]; count = 0; } } // Return the final result return ans; } public static void main(String[] args) { int[] arr = {1 2 3 4}; int k = 1; int n = arr.length; // Call the countSubarray function to count the number of subarrays with maximum element greater than k int result = countSubarray(arr n k); System.out.println(result); } } // THIS CODE IS CONTRIBUTED BY KIRTI AGARWAL
Python3 def countSubarray(arr n k): maxElement count ans = 0 0 0 for i in range(n): if arr[i] > maxElement: maxElement = arr[i] count = 0 else: count += 1 if maxElement > k: ans += (i - count + 1) maxElement = arr[i] count = 0 ans += (count * (count + 1)) // 2 return ans arr = [1 2 3 4] k = 1 n = len(arr) print(countSubarray(arr n k)) # This code is contributed by Vaibhav Saroj
C# using System; public class Program { public static int CountSubarray(int[] arr int n int k) { int maxElement = 0 count = 0 ans = 0; for(int i=0; i<n; i++) { if(arr[i] > maxElement) { maxElement = arr[i]; count = 0; } else { count++; } if(maxElement > k) { ans += (i - count + 1); maxElement = arr[i]; count = 0; } } ans += (count * (count + 1)) / 2; return ans; } public static void Main() { int[] arr = {1 2 3 4}; int k = 1; int n = arr.Length; Console.WriteLine(CountSubarray(arr n k)); } } // This code is contributed by Vaibhav Saroj
JavaScript function countSubarray(arr n k) { let maxElement = 0 count = 0 ans = 0; for(let i=0; i<n; i++) { if(arr[i] > maxElement) { maxElement = arr[i]; count = 0; } else { count++; } if(maxElement > k) { ans += (i - count + 1); maxElement = arr[i]; count = 0; } } ans += (count * (count + 1)) / 2; return ans; } let arr = [1 2 3 4]; let k = 1; let n = arr.length; console.log(countSubarray(arr n k)); // This code is contributed by Vaibhav Saroj
Ieșire
9
Tehnica ferestrei glisante este contribuită de Vaibhav Saroj .
Complexitatea timpului: O( n ).
Complexitate spațială: O( 1 ).