logo

Șabloane C++

Un șablon C++ este o funcție puternică adăugată la C++. Vă permite să definiți clasele generice și funcțiile generice și, astfel, oferă suport pentru programarea generică. Programarea generică este o tehnică în care tipurile generice sunt utilizate ca parametri în algoritmi, astfel încât să poată funcționa pentru o varietate de tipuri de date.

Șabloanele pot fi reprezentate în două moduri:

  • Șabloane de funcție
  • Șabloane de clasă
Șabloane C++

Șabloane de funcție:

Putem defini un șablon pentru o funcție. De exemplu, dacă avem o funcție add(), putem crea versiuni ale funcției add pentru adăugarea valorilor de tip int, float sau double.

întrebări de interviu în limba java

Șablon de clasă:

Putem defini un șablon pentru o clasă. De exemplu, un șablon de clasă poate fi creat pentru clasa matrice care poate accepta matrice de diferite tipuri, cum ar fi matrice int, matrice float sau matrice dublă.


Șablon de funcție

  • Funcțiile generice folosesc conceptul de șablon de funcție. Funcțiile generice definesc un set de operații care pot fi aplicate diferitelor tipuri de date.
  • Tipul datelor pe care funcția va funcționa depinde de tipul datelor transmise ca parametru.
  • De exemplu, algoritmul de sortare rapidă este implementat folosind o funcție generică, poate fi implementat într-o matrice de numere întregi sau într-o matrice de floats.
  • O funcție generică este creată folosind șablonul de cuvinte cheie. Șablonul definește ce funcție va face.

Sintaxa șablonului de funcție

 template ret_type func_name(parameter_list) { // body of function. } 

Unde Ttype : Este un nume de substituent pentru un tip de date folosit de funcție. Este utilizat în definiția funcției. Compilatorul va înlocui automat acest substituent cu tipul de date real.

clasă : Un cuvânt cheie de clasă este folosit pentru a specifica un tip generic într-o declarație șablon.

Să vedem un exemplu simplu de șablon de funcție:

 #include using namespace std; template T add(T &amp;a,T &amp;b) { T result = a+b; return result; } int main() { int i =2; int j =3; float m = 2.3; float n = 1.2; cout&lt;<'addition of i and j is :'< <add(i,j); cout<<'
'; cout<<'addition m n <add(m,n); return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> Addition of i and j is :5 Addition of m and n is :3.5 </pre> <p>In the above example, we create the function template which can perform the addition operation on any type either it can be integer, float or double.</p> <h3>Function Templates with Multiple Parameters</h3> <p>We can use more than one generic type in the template function by using the comma to separate the list.</p> <h2>Syntax</h2> <pre> template return_type function_name (arguments of type T1, T2....) { // body of function. } </pre> <p>In the above syntax, we have seen that the template function can accept any number of arguments of a different type.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a,Y b) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; std::cout << 'value of b is : ' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << 'value of is : ' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<'value of a is : '< <a<<'
'; } void fun(int b) { if(b%2="=0)" cout<<'number even'; else odd'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<' ,'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] ' '; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></'></pre></std::endl;></pre></'value></pre></a<<></pre></a<<></pre></'addition>

În exemplul de mai sus, creăm șablonul de funcție care poate efectua operația de adăugare pe orice tip, fie că poate fi întreg, flotant sau dublu.

Șabloane de funcție cu parametri multipli

Putem folosi mai mult de un tip generic în funcția șablon folosind virgula pentru a separa lista.

Sintaxă

 template return_type function_name (arguments of type T1, T2....) { // body of function. } 

În sintaxa de mai sus, am văzut că funcția șablon poate accepta orice număr de argumente de alt tip.

Să vedem un exemplu simplu:

 #include using namespace std; template void fun(X a,Y b) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; std::cout << \'value of b is : \' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<></pre></a<<>

În exemplul de mai sus, folosim două tipuri generice în funcția șablon, adică X și Y.

scorul de precizie sklearn

Supraîncărcarea unui șablon de funcție

Putem supraîncărca funcția generică înseamnă că funcțiile șablonului supraîncărcate pot diferi în lista de parametri.

Să înțelegem asta printr-un exemplu simplu:

 #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<>

În exemplul de mai sus, șablonul funcției fun() este supraîncărcat.

Restricții ale funcțiilor generice

Funcțiile generice efectuează aceeași operațiune pentru toate versiunile unei funcții, cu excepția tipului de date diferit. Să vedem un exemplu simplu de funcție supraîncărcată care nu poate fi înlocuită cu funcția generică, deoarece ambele funcții au funcționalități diferite.

Să înțelegem asta printr-un exemplu simplu:

număr prim în java
 #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value>

În exemplul de mai sus, supraîncărcăm funcțiile obișnuite. Nu putem supraîncărca funcțiile generice, deoarece ambele funcții au funcționalități diferite. Primul afișează valoarea, iar al doilea determină dacă numărul este par sau nu.


Șablon de clasă

Șablon de clasă poate fi, de asemenea, definit în mod similar cu șablonul de funcție. Când o clasă folosește conceptul de șablon, atunci clasa este cunoscută ca clasă generică.

Sintaxă

 template class class_name { . . } 

Ttype este un nume de substituent care va fi determinat atunci când clasa este instanțiată. Putem defini mai mult de un tip de date generice folosind o listă separată prin virgulă. Tipul T poate fi folosit în corpul clasei.

Acum, creăm o instanță a unei clase

 class_name ob; 

unde class_name : Este numele clasei.

tip : este tipul de date pe care operează clasa.

buclă for în java

la : Este numele obiectului.

Să vedem un exemplu simplu:

 #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;>

În exemplul de mai sus, creăm un șablon pentru clasa A. În cadrul metodei main(), creăm instanța clasei A numită „d”.

ȘABLAN DE CLASĂ CU MULTI PARAMETRI

Putem folosi mai mult de un tip de date generice într-un șablon de clasă, iar fiecare tip de date generice este separat prin virgulă.

Sintaxă

 template class class_name { // Body of the class. } 

Să vedem un exemplu simplu când șablonul de clasă conține două tipuri de date generice.

 #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\\' ,\\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\\'>

Argumente șablon netip

Șablonul poate conține mai multe argumente și putem folosi și argumentele non-tip În plus față de argumentul de tip T, putem folosi și alte tipuri de argumente, cum ar fi șiruri de caractere, nume de funcții, expresii constante și tipuri încorporate. Să vedem următorul exemplu:

 template class array { T arr[size]; // automatic array initialization. }; 

În cazul de mai sus, argumentul șablon nontype este dimensiunea și, prin urmare, șablonul furnizează dimensiunea matricei ca argument.

arian khan

Argumentele sunt specificate atunci când sunt create obiectele unei clase:

 array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. 

Să vedem un exemplu simplu de argumente șablon nontype.

 #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)>

În exemplul de mai sus, este creat șablonul de clasă care conține argumentul șablon nontype, adică dimensiune. Este specificat când este creat obiectul clasei „A”.

Puncte de reținut

  • C++ acceptă o caracteristică puternică cunoscută sub numele de șablon pentru a implementa conceptul de programare generică.
  • Un șablon ne permite să creăm o familie de clase sau o familie de funcții pentru a gestiona diferite tipuri de date.
  • Clasele și funcțiile șabloane elimină duplicarea codului diferitelor tipuri de date și astfel face dezvoltarea mai ușoară și mai rapidă.
  • Parametri multipli pot fi utilizați atât în ​​șablonul de clasă, cât și de funcție.
  • Funcțiile șablonului pot fi, de asemenea, supraîncărcate.
  • De asemenea, putem folosi argumente netip, cum ar fi tipurile de date încorporate sau derivate, ca argumente șablon.